scholarly journals Optimization design of multi-gathering mode for the surface system in coalbed methane field

Petroleum ◽  
2022 ◽  
Author(s):  
Jun Zhou ◽  
Tiantian Fu ◽  
Kunyi Wu ◽  
Yunxiang Zhao ◽  
Lanting Feng ◽  
...  
2014 ◽  
Vol 1030-1032 ◽  
pp. 1399-1402
Author(s):  
Li Jiang Duan ◽  
Zhao Hui Xia ◽  
Chun Lei Li ◽  
Ling Li Liu ◽  
Chao Bin Zhao ◽  
...  

SIS well is a successful technology for coalbed methane development. In this paper, the drilling and completion technology were introduced systematically on the aspects of optimization design of well profile, drilling equipment, drilling and completion technology of vertical well and horizontal well, and intersection technique of these two wells. Two new well patterns, i.e., commingled well and boat-shape well were also proposed. When application this technology to other areas, some improvement may should be made according to special geological data.


Author(s):  
Jun Zhou ◽  
XiaoPing Li ◽  
Mengya Cheng ◽  
Tao Deng ◽  
Jing Gong

China is abundant in coalbed methane (CBM) resource. The unconventional natural gas reserves has reached 36.81*1012 m3. The Qinshui Basin in Shanxi Province is the largest gas field among CBM gas fields in China which are commercially exploited since the year 2003. In order to solve some typical problems in CBM production, this article considered the geographical characteristics of the fields, introduced and analyzed the low pressure gathering and transporting process and facilities, as well as the important techniques. Respectively, this article introduced the surface gathering and transporting procedure, analyzed the characteristics and topological structure; it also proposed the optimization scheme of combining steel pipes with PE pipes in processing system. The gathering and transporting processes of remote areas should be flexible and able to solve the problems during gas recovery from both largely exploited CBM blocks and remote blocks with low production. Thus a more reasonable system design should be proposed. To carry out the scheme, it first defined the topological structure of the system with graph theory, then established the economic model of the combined scheme. The article calculated the critical length of pipeline between two methods and defined the concept of “remote” well area. With the analysis of the actual conditions in a certain block in Qinshui Shanxi, the conclusion shows that: the scheme of laying pipelines can make more profit, which is consistent with the actual field situation., At the same time, we chose a phased optimization method, which divided the optimization of entire system into several sub-problems, including well group division, nodes connection relationship, determination of plant’s optimal position, and optimization of pipe diameter. Then we established optimization model that takes the investment costs of each stage as objective functions. The example shows that compared with the artificial design result, the total length of pipeline was reduced by 4.576 km, pipeline investment by 7.35×104 US$, with the respective rates of returns of 19.57% and 4.89%. The number of valve sets in the system fell from 16 to 11 (31%). By analyzing the investment and construction scale of the existing pipe network and optimal pipe network we have proved that the method has an ideal optimization effect. These techniques and schemes can give reasonable instructions in CBM surface gathering system design, powerfully promoting the development of the Chinese CBM industry.


2017 ◽  
Vol 9 (6) ◽  
pp. 168781401770890 ◽  
Author(s):  
Jun Zhou ◽  
Guangchuan Liang ◽  
Tao Deng ◽  
Shiwei Zhou

2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Jun Zhou ◽  
Guangchuan Liang ◽  
Tao Deng ◽  
Shiwei Zhou ◽  
Jing Gong

As an unconventional energy, coalbed methane (CBM) mainly exists in coal bed with adsorption, whose productivity is different from conventional gas reservoir. This paper explains the wellbore pressure drop, surface pipeline network simulation, and reservoir calculation model of CBM. A coupled surface/wellbore/reservoir calculation architecture was presented, to coordinate the gas production in each calculation period until the balance of surface/wellbore/reservoir. This coupled calculation method was applied to a CBM field for predicting production. The daily gas production increased year by year at the first time and then decreased gradually after several years, while the daily water production was reduced all the time with the successive decline of the formation pressure. The production of gas and water in each well is almost the same when the structure is a star. When system structure is a dendritic surface system, the daily gas production ranked highest at the well which is the nearest to the surface system collection point and lowest at the well which is the farthest to the surface system collection point. This coupled calculation method could be used to predict the water production, gas production, and formation pressure of a CBM field during a period of time.


2017 ◽  
Vol 05 (09) ◽  
pp. 121-131 ◽  
Author(s):  
Chuantao Wang ◽  
Dongmin Ma ◽  
Qian He ◽  
Qian Li ◽  
Pengcheng Liu

2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


2017 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Kathryn Bills Walsh

This case presents the stakeholder conflicts that emerge during the development and subsequent reclamation of abandoned natural gas wells in Wyoming where split estate, or the separation of surface land and mineral rights from one another, occurs. From 1998 to 2008, the Powder River Basin of northeastern Wyoming experienced an energy boom as a result of technological innovation that enabled the extraction of coalbed methane (CBM). The boom resulted in over 16,000 wells being drilled in this 20,000 square-mile region in a single decade. As of May 2017, 4,149 natural gas wells now sit orphaned in Wyoming as a result of industry bankruptcy and abandonment. The current orphaned wells crisis was partially enabled by the patchwork of surface and mineral ownership in Wyoming that is a result of a legal condition referred to as split estate. As the CBM boom unfolded in this landscape and then began to wane, challenges emerged most notably surrounding stalled reclamation activities. This case illuminates these challenges highlighting two instances when split estate contributed to issues between landowners and industry operators which escalated to litigation.


Sign in / Sign up

Export Citation Format

Share Document