Development of wax molecular diffusivity correlation suitable for crude oil in wax deposition: Experiments with a cold-finger apparatus

2021 ◽  
Vol 205 ◽  
pp. 108851
Author(s):  
Kaifeng Fan ◽  
Si Li ◽  
Rongbin Li
2021 ◽  
Vol 294 ◽  
pp. 06005
Author(s):  
Kreangkrai Maneeintr ◽  
Tanapol Ruengnam ◽  
Thodsaporn Taweeaphiradeemanee ◽  
Treetasase Tuntitanakij

In petroleum chemistry, waxy oil from paraffins can cause operating problems for oil production. The chemical method is used to remove by using chemicals or additives to prevent the wax problem. In this study, the performance of wax inhibitor are evaluated by the measurement of pour-point reduction and wax deposition of crude oil from Mae Soon area, Fang oilfield. Wax deposition is determined by cold finger technique. Wax inhibitors, hexane, Poly(maleic anhydride-alt-1-octadecene) (PMAO) and monoethanolamine (MEA) are mixed in oil sample at various concentrations. From the experiment, it is presented that hexane is used to reduce pour-point temperature up to 19.55 % and to reduce wax deposit up to 92.56 %. Moreover, MEA and PMAO have less effect on pour-point reduction. However, they have high efficiency to prevent wax deposition. PMAO provide the better wax deposition performance than MEA. The amount of wax deposit is lower at the same conditions. The percentage of wax deposit is from 39.19 % to 83.02 % for MEA and from 58.54 % to 88.51 % for PMAO. Furthermore, from the results, the preferred concentration of hexane can be at 10 % and PMAO can be 7500 ppm at low temperature or 5000 ppm for higher temperature. The results of this research can be applied to the practical way for wax deposition prevention operation in Mae Soon area in Fang oilfield to reduce the wax problem in the future.


Author(s):  
Basem Elarbe ◽  
Ibrahim Elganidi ◽  
Norida Ridzuan ◽  
Kamal Yusoh ◽  
Norhayati Abdullah ◽  
...  

AbstractWax deposition in production pipelines and transportation tubing from offshore to onshore is critical in the petroleum industry due to low-temperature conditions. The most significant popular approach to solve this issue is by inserting a wax inhibitor into the channel. This research aims to reduce the amount of wax formation of Malaysian crude oil by estimating the effective parameters using Design-Expert by full factorial design (FFD) method. Five parameters have been investigated, which are rotation speed (A), cold finger temperature (B), duration of experimental (C), the concentration of poly (stearyl acrylate-co-behenyl acrylate) (SABA) (D), and concentration of nano-silica SiO2 (E). The optimum conditions for reducing the amount of wax deposit have been identified using FFD at 300 rpm, 10 ℃, 1 h, 1200 ppm and 400 ppm, respectively. The amount of wax deposit estimated is 0.12 g. The regression model’s variance results revealed that the R2 value of 0.9876, showing 98.76% of the data variation, can be described by the model. The lack of fit is not important in comparison to the pure error, which is good. The lack of fit F value of 12.85 means that there is only a 7.41% probability that this huge can occur because of noise. The influence of cold finger temperature was reported as the main contributing factor in the formation of wax deposits compared to other factors. In addition, the interaction between factor B and factor C revealed the highest interaction effect on the wax deposition. In conclusion, the best interaction variables for wax inhibition can be determined using FFD. It is a valued tool to measure and detect the unique relations of two or more variables. As a result, the findings of this study can be used to develop a reliable model for predicting optimum conditions for reducing wax deposits and the associated costs and processing time.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 103
Author(s):  
Lixin Wei ◽  
Da Li ◽  
Chao Liu ◽  
Zhaojun He ◽  
Yang Ge

In order to solve the problem of wax deposition in waxy crude oil from the Daqing oilfield, cold fingers were used in the experimentation. Compared with other methods, the cold finger method is simple, easy to operate, and takes little space. Measurements of wax deposition with temperature, temperature differences between the crude oil and the wall, deposition time, and cold finger rotation rate were made. The results showed that the deposition rate is up to 0.35 g/h at 8–24 h. The maximum deposition rate at 90 rotations/min was 0.26 g/h, which is 3% higher than the minimum deposition rate.


Author(s):  
Ibrahim Elganidi ◽  
Basem Elarbe ◽  
Norida Ridzuan ◽  
Norhayati Abdullah

AbstractWax deposition is considered one of the most serious operational issues in the crude oil pipelines. This issue occurs when the crude oil temperature decreases below the temperature of wax appearance and paraffin wax starts to precipitate on the pipelines’ inner walls. As a result, the crude oil flow is impeded because of the precipitated wax. The use of polymeric pour point depressants has obtained significant interest among researchers as an approach of wax control for enhancing the flowability of the waxy crude oil. PPD of poly(behenyl acrylate -co-stearyl methacrylate-co- maleic anhydride) (BA-co-SMA-co-MA) was facilely synthesised by the use of free radical polymerisation. The variation of the PPD structure was studied by choosing several essential parameters like monomers ratio, reaction time, initiator concentration, and reaction temperature. Furthermore, viscosity measurement, pour point, and cold finger apparatus have been employed to evaluate the efficiency of the synthesised Polymer. The chemical structure of poly(BA-co-SMA-co-MA) has been identified through the use of Fourier transform infrared as well as nuclear magnetic resonance. The experimental findings demonstrated that the ideal conditions for obtaining the highest yield were 1.5% initiator concentration, reaction time and temperature of 8 h and 100 °C, respectively, and monomer ratio of 1:1:1 (BA:SMA:MA). Under these ideal conditions, the prepared terpolymer reduced the crude oil viscosity at 30 °C and 1500 ppm from 7.2 to 3.2 mPa.s. The cold finger experiment demonstrated that after poly(BA-co-SMA-co-MA) was used as a wax inhibitor, the maximum efficiency of paraffin inhibition of 45.6% was achieved at 200 rpm and 5 °C. Besides, the best performance in depressing the pour point by ΔPP 14 ℃ observed at the concentration of 1500 ppm, which can change the growth characteristics of wax crystals and delay the aggregation of asphaltene and resin, thus effectively improving the flowability of crude oil.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4325
Author(s):  
Zhihua Wang ◽  
Yunfei Xu ◽  
Yi Zhao ◽  
Zhimin Li ◽  
Yang Liu ◽  
...  

Wax deposition during crude oil transmission can cause a series of negative effects and lead to problems associated with pipeline safety. A considerable number of previous works have investigated the wax deposition mechanism, inhibition technology, and remediation methods. However, studies on the shearing mechanism of wax deposition have focused largely on the characterization of this phenomena. The role of the shearing mechanism on wax deposition has not been completely clarified. This mechanism can be divided into the shearing dispersion effect caused by radial migration of wax particles and the shearing stripping effect caused by hydrodynamic scouring. From the perspective of energy analysis, a novel wax deposition model was proposed that considered the flow parameters of waxy crude oil in pipelines instead of its rheological parameters. Considering the two effects of shearing dispersion and shearing stripping coexist, with either one of them being the dominant mechanism, a shearing dispersion flux model and a shearing stripping model were established. Furthermore, a quantitative method to distinguish between the roles of shearing dispersion and shearing stripping in wax deposition was developed. The results indicated that the shearing mechanism can contribute an average of approximately 10% and a maximum of nearly 30% to the wax deposition process. With an increase in the oil flow rate, the effect of the shearing mechanism on wax deposition is enhanced, and its contribution was demonstrated to be negative; shear stripping was observed to be the dominant mechanism. A critical flow rate was observed when the dominant effect changes. When the oil flow rate is lower than the critical flow rate, the shearing dispersion effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. When the oil flow rate is higher than the critical flow rate, the shearing stripping effect is the dominant effect; its contribution rate increases with an increase in the oil flow temperature. This understanding can be used to design operational parameters of the actual crude oil pipelines and address the potential flow assurance problems. The results of this study are of great significance for understanding the wax deposition theory of crude oil and accelerating the development of petroleum industry pipelines.


2021 ◽  
Author(s):  
Ferdio Giffary ◽  
Achmad Anggawirya Alimin ◽  
Bambang Heru Susanto

2018 ◽  
Vol 32 (10) ◽  
pp. 10605-10615 ◽  
Author(s):  
Haoran Zhu ◽  
Chuanxian Li ◽  
Fei Yang ◽  
Hongye Liu ◽  
Dinghong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document