Glycyrol exerts potent therapeutic effect on lung cancer via directly inactivating T-LAK cell-originated protein kinase

2019 ◽  
Vol 147 ◽  
pp. 104366 ◽  
Author(s):  
Shangyun Lu ◽  
Linhu Ye ◽  
Shutao Yin ◽  
Chong Zhao ◽  
Mingzhu Yan ◽  
...  
2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Xin Diao ◽  
Danfen Yang ◽  
Yu Chen ◽  
Wentian Liu

AbstractBaicalin is the main bioactive component extracted from the traditional Chinese medicine Baical Skullcap Root, and its anti-tumor activity has been studied in previous studies. PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK), a serine/threonine protein kinase, is highly expressed in many cancer cells and stimulates the tumorigenic properties, and so, it is a pivotal target for agent to cure cancers. We reported for the first time that baicalin suppressed PBK/TOPK activities by directly binding with PBK/TOPK in vitro and in vivo. Ex vivo studies showed that baicalin suppressed PBK/TOPK activity in JB6 Cl41 cells and H441 lung cancer cells. Moreover, knockdown of PBK/TOPK in H441 cells decreased their sensitivity to baicalin. In vivo study indicated that injection of baicalin in H441 tumor-bearing mice effectively suppressed cancer growth. The PBK/TOPK downstream signaling molecules Histone H3 and ERK2 in tumor tissues were also decreased after baicalin treatment. Taken together, baicalin can inhibit proliferation of lung cancer cells as a PBK/TOPK inhibitor both in vitro and in vivo.


2017 ◽  
Vol 108 (3) ◽  
pp. 488-496 ◽  
Author(s):  
Jae-Hyun Park ◽  
Hiroyuki Inoue ◽  
Taigo Kato ◽  
Makda Zewde ◽  
Takashi Miyamoto ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sutthaorn Pothongsrisit ◽  
Kuntarat Arunrungvichian ◽  
Yoshihiro Hayakawa ◽  
Boonchoo Sritularak ◽  
Supachoke Mangmool ◽  
...  

AbstractCancer metastasis is a major cause of the high mortality rate in lung cancer patients. The cytoskeletal rearrangement and degradation of extracellular matrix are required to facilitate cell migration and invasion and the suppression of these behaviors is an intriguing approach to minimize cancer metastasis. Even though Erianthridin (ETD), a phenolic compound isolated from the Thai orchid Dendrobium formosum exhibits various biological activities, the molecular mechanism of ETD for anti-cancer activity is unclear. In this study, we found that noncytotoxic concentrations of ETD (≤ 50 μM) were able to significantly inhibit cell migration and invasion via disruption of actin stress fibers and lamellipodia formation. The expression of matrix metalloproteinase-2 (MMP-2) and MMP-9 was markedly downregulated in a dose-dependent manner after ETD treatment. Mechanistic studies revealed that protein kinase B (Akt) and its downstream effectors mammalian target of rapamycin (mTOR) and p70 S6 kinase (p70S6K) were strongly attenuated. An in silico study further demonstrated that ETD binds to the protein kinase domain of Akt with both hydrogen bonding and van der Waals interactions. In addition, an in vivo tail vein injection metastasis study demonstrated a significant effect of ETD on the suppression of lung cancer cell metastasis. This study provides preclinical information regarding ETD, which exhibits promising antimetastatic activity against non-small-cell lung cancer through Akt/mTOR/p70S6K-induced actin reorganization and MMPs expression.


2021 ◽  
Vol 22 (11) ◽  
pp. 5527
Author(s):  
Mohammad Mojtaba Sadeghi ◽  
Mohamed F. Salama ◽  
Yusuf A. Hannun

Driver-directed therapeutics have revolutionized cancer treatment, presenting similar or better efficacy compared to traditional chemotherapy and substantially improving quality of life. Despite significant advances, targeted therapy is greatly limited by resistance acquisition, which emerges in nearly all patients receiving treatment. As a result, identifying the molecular modulators of resistance is of great interest. Recent work has implicated protein kinase C (PKC) isozymes as mediators of drug resistance in non-small cell lung cancer (NSCLC). Importantly, previous findings on PKC have implicated this family of enzymes in both tumor-promotive and tumor-suppressive biology in various tissues. Here, we review the biological role of PKC isozymes in NSCLC through extensive analysis of cell-line-based studies to better understand the rationale for PKC inhibition. PKC isoforms α, ε, η, ι, ζ upregulation has been reported in lung cancer, and overexpression correlates with worse prognosis in NSCLC patients. Most importantly, PKC isozymes have been established as mediators of resistance to tyrosine kinase inhibitors in NSCLC. Unfortunately, however, PKC-directed therapeutics have yielded unsatisfactory results, likely due to a lack of specific evaluation for PKC. To achieve satisfactory results in clinical trials, predictive biomarkers of PKC activity must be established and screened for prior to patient enrollment. Furthermore, tandem inhibition of PKC and molecular drivers may be a potential therapeutic strategy to prevent the emergence of resistance in NSCLC.


2010 ◽  
Vol 285 (38) ◽  
pp. 29138-29146 ◽  
Author(s):  
Tatyana A. Zykova ◽  
Feng Zhu ◽  
Tatyana I. Vakorina ◽  
Jishuai Zhang ◽  
Lee Ann Higgins ◽  
...  

2015 ◽  
Vol 8 (11) ◽  
pp. 983-988 ◽  
Author(s):  
Feng Yuan ◽  
Ying Zhou ◽  
Ying Jiang ◽  
Rui Liu ◽  
Jian-Zhe Li ◽  
...  

2016 ◽  
Vol 22 (24) ◽  
pp. 6110-6117 ◽  
Author(s):  
Yuji Ikeda ◽  
Jae-Hyun Park ◽  
Takashi Miyamoto ◽  
Naofumi Takamatsu ◽  
Taigo Kato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document