scholarly journals Comprehensive and quantitative profiling of lipid molecular species by LC-ESI-MS/MS of four native species from semiarid Patagonian Monte

2020 ◽  
Vol 146 ◽  
pp. 447-456
Author(s):  
Ana M. Cenzano ◽  
Idris Arslan
Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4609 ◽  
Author(s):  
Xin Gao ◽  
Wenru Liu ◽  
Jun Mei ◽  
Jing Xie

Shewanella putrefaciens is a well-known specific spoilage organism (SSO) and cold-tolerant microorganism in refrigerated fresh marine fish. Cold-adapted mechanism includes increased fluidity of lipid membranes by the ability to finely adjust lipids composition. In the present study, the lipid profile of S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C was explored using ultra-high-pressure liquid chromatography/electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) to discuss the effect of lipid composition on cold-adapted tolerance. Lipidomic analysis detected a total of 27 lipid classes and 606 lipid molecular species in S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C. S. putrefaciens cultivated at 30 °C (SP-30) had significantly higher content of glycerolipids, sphingolipids, saccharolipids, and fatty acids compared with that at 0 °C (SP-0); however, the lower content of phospholipids (13.97%) was also found in SP-30. PE (30:0), PE (15:0/15:0), PE (31:0), PA (33:1), PE (32:1), PE (33:1), PE (25:0), PC (22:0), PE (29:0), PE (34:1), dMePE (15:0/16:1), PE (31:1), dMePE (15:1/15:0), PG (34:2), and PC (11:0/11:0) were identified as the most abundant lipid molecular species in S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C. The increase of PG content contributes to the construction of membrane lipid bilayer and successfully maintains membrane integrity under cold stress. S. putrefaciens cultivated at low temperature significantly increased the total unsaturated liquid contents but decreased the content of saturated liquid contents.


2014 ◽  
Vol 113 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Allain A. Bueno ◽  
Annette Brand ◽  
Marita M. Neville ◽  
Catherine Lehane ◽  
Nina Brierley ◽  
...  

The majority of children with Down syndrome (DS) develop Alzheimer's disease (AD) at an early age. Although long-chainn-3 fatty acids (FA) are protective of neurodegeneration, little is known about the FA status in DS. In the present study, we aimed to investigate whether children with DS presented altered plasma and erythrocyte membrane phospholipids (PL) FA composition, when compared with their non-affected siblings. Venous blood samples were analysed for plasma and erythrocyte membrane FA composition by TLC followed by GC techniques. Lipid molecular species were determined by electrospray ionisation/tandem MS (ESI-MS/MS). FA analysis measured by standard GC showed an increased concentration of MUFA and a decreased concentration of plasmalogens in major PL fractions, but there were no differences in the concentrations of arachidonic acid or DHA. However, as identified by ESI-MS/MS, children with DS had increased levels of the following erythrocyte PL molecular species: 16 : 0–16 : 0, 16 : 0–18 : 1 and 16 : 0–18 : 2n-6, with reduced levels of 16 : 0–20 : 4n-6 species. Children with DS presented significantly higher levels of MUFA in both plasma and erythrocyte membrane, as well as higher levels of saturated and monounsaturated molecular species. Of interest was the almost double proportion of 16 : 0–18 : 2n-6 and nearly half the proportion of 16 : 0–20 : 4n-6 of choline phosphoacylglycerol species in children with DS compared with their non-affected siblings. These significant differences were only revealed by ESI-MS/MS and were not observed in the GC analysis. Further investigations are needed to explore molecular mechanisms and to test the association between the pathophysiology of DS and the risk of AD.


2012 ◽  
Vol 75 (21-22) ◽  
pp. 1271-1278 ◽  
Author(s):  
Wenming Cao ◽  
Kangyi Zhang ◽  
Guanjun Tao ◽  
Xingguo Wang ◽  
Yuanfa Liu

Sign in / Sign up

Export Citation Format

Share Document