Temporal expression profiling of GhNAC transcription factor genes in cotton cultivars under abiotic stresses

Plant Gene ◽  
2021 ◽  
Vol 28 ◽  
pp. 100334
Author(s):  
S. Sivakumar ◽  
G. Prem Kumar ◽  
S. Vinoth ◽  
G. Siva ◽  
M. Vigneswaran ◽  
...  
2010 ◽  
Vol 6 (5) ◽  
pp. 767-781 ◽  
Author(s):  
Daniel Ramiro ◽  
Aida Jalloul ◽  
Anne-Sophie Petitot ◽  
Maria Fátima Grossi De Sá ◽  
Mirian P. Maluf ◽  
...  

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4172 ◽  
Author(s):  
Bernard Kinuthia Karanja ◽  
Liang Xu ◽  
Yan Wang ◽  
Everlyne M’mbone Muleke ◽  
Bashir Mohammed Jabir ◽  
...  

NAC (NAM, no apical meristem; ATAF, Arabidopsis transcription activation factor and CUC, cup-shaped cotyledon) proteins are among the largest transcription factor (TF) families playing fundamental biological processes, including cell expansion and differentiation, and hormone signaling in response to biotic and abiotic stresses. In this study, 172 RsNACs comprising 17 membrane-bound members were identified from the whole radish genome. In total, 98 RsNAC genes were non-uniformly distributed across the nine radish chromosomes. In silico analysis revealed that expression patterns of several NAC genes were tissue-specific such as a preferential expression in roots and leaves. In addition, 21 representative NAC genes were selected to investigate their responses to heavy metals (HMs), salt, heat, drought and abscisic acid (ABA) stresses using real-time polymerase chain reaction (RT-qPCR). As a result, differential expressions among these genes were identified where RsNAC023 and RsNAC080 genes responded positively to all stresses except ABA, while RsNAC145 responded more actively to salt, heat and drought stresses compared with other genes. The results provides more valuable information and robust candidate genes for future functional analysis for improving abiotic stress tolerances in radish.


2019 ◽  
Author(s):  
Roy Njoroge Kimotho ◽  
Elamin Hafiz Baillo ◽  
Zhengbin Zhang

Background: Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in different regions around the world, and recently, this has become a major threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activity of transcription factors, which are families of genes coding for specific transcription factor proteins whose target genes form a regulon which is involved in the repression/ activation of genes associated with abiotic stress responses. Therefore, it is of uttermost importance to have a systematic study on each family of the transcription factors, the downstream target genes they regulate, and the specific transcription factor genes which are involved in multiple abiotic stress responses in maize and other main crops. Method: In this review, the main transcription factor families, the specific transcription factor genes and their regulons which are involved in abiotic stress regulation will be momentarily discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from other plants like rice, Arabidopsis, wheat, and barley will be used. Results: We have described in detail the main transcription factor families in maize which take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning and RNA-Seq technology. Conclusion: In conclusion, it is hoped that all the information provided in this review may in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.


Author(s):  
Roy Njoroge Kimotho ◽  
Elamin Hafiz Baillo ◽  
Zhengbin Zhang

Background: Maize (Zea mays L.) is a principal cereal crop cultivated worldwide for human food, animal feed, and more recently as a source of biofuel. However, as a direct consequence of water insufficiency and climate change, frequent occurrences of both biotic and abiotic stresses have been reported in different regions around the world, and recently, this has become a major threat in increasing global maize yields. Plants respond to abiotic stresses by utilizing the activity of transcription factors, which are families of genes coding for specific transcription factor proteins whose target genes form a regulon which is involved in the repression/ activation of genes associated with abiotic stress responses. Therefore, it is of uttermost importance to have a systematic study on each family of the transcription factors, the downstream target genes they regulate, and the specific transcription factor genes which are involved in multiple abiotic stress responses in maize and other main crops. Method: In this review, the main transcription factor families, the specific transcription factor genes and their regulons which are involved in abiotic stress regulation will be momentarily discussed. Great emphasis will be given on maize abiotic stress improvement throughout this review, although other examples from other plants like rice, Arabidopsis, wheat, and barley will be used. Results: We have described in detail the main transcription factor families in maize which take part in abiotic stress responses together with their regulons. Furthermore, we have also briefly described the utilization of high-efficiency technologies in the study and characterization of TFs involved in the abiotic stress regulatory networks in plants with an emphasis on increasing maize production. Examples of these technologies include next-generation sequencing, microarray analysis, machine learning and RNA-Seq technology. Conclusion: In conclusion, it is hoped that all the information provided in this review may in time contribute to the use of TF genes in the research, breeding, and development of new abiotic stress tolerant maize cultivars.


2010 ◽  
Vol 53 (2) ◽  
pp. 142-149 ◽  
Author(s):  
Ai-Ling Liu ◽  
Jie Zou ◽  
Xian-Wen Zhang ◽  
Xiao-Yun Zhou ◽  
Wen-Fang Wang ◽  
...  

Gene ◽  
2019 ◽  
Vol 707 ◽  
pp. 189-197 ◽  
Author(s):  
Wenjing Yao ◽  
Boru Zhou ◽  
Xuemei Zhang ◽  
Kai Zhao ◽  
Zihan Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document