A Homer 1 gene variant influences brain structure and function, lithium effects on white matter, and antidepressant response in bipolar disorder: A multimodal genetic imaging study

Author(s):  
Francesco Benedetti ◽  
Sara Poletti ◽  
Clara Locatelli ◽  
Elena Mazza ◽  
Cristina Lorenzi ◽  
...  
2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Nenad Stojiljković ◽  
Petar Mitić ◽  
Goran Sporiš

Purpose. The aim of this study is to reveal the effects of exercise on the brain structure and function in children, and to analyze methodological approach applied in the researches of this topic. Methods. This literature review provides an overview of important findings in this fast growing research domain. Results from cross-sectional, longitudinal, and interventional studies of the influence of exercise on the brain structure and function of healthy children are reviewed and discussed. Results. The majority of researches are done as cross sectional studies based on the exploring correlation between the level of physical activity and characteristics of brain structure and function. Results of the studies indicate that exercise has positive correlation with improved cognition and beneficial changes to brain function in children. Physically active children have greater white matter integrity in several white matter tracts (corpus callosum, corona radiata, and superior longitudinal fasciculus), have greater volume of gray matter in the hippocampus and basal ganglia than their physically inactive counterparts. The longitudinal/interventional studies also showed that exercise (mainly aerobic) improve cognitive performance of children and causes changes observed on functional magnetic resonance imaging scans (fMRI) located in prefrontal and parietal regions. Conclusion. Previous researches undoubtable proved that exercise can make positive changes of the brain structures in children, specifically the volume of the hippocampus which is the center of learning and memory. Finally the researchers agree that the most influential type of exercise on changes of brain structure and functions are the aerobic exercises. 


2015 ◽  
Vol 1612 ◽  
pp. 83-103 ◽  
Author(s):  
N. Nevalainen ◽  
K. Riklund ◽  
M. Andersson ◽  
J. Axelsson ◽  
M. Ögren ◽  
...  

2015 ◽  
Vol 45 (12) ◽  
pp. 2461-2480 ◽  
Author(s):  
R. Gurung ◽  
D. P. Prata

The powerful genome-wide association studies (GWAS) revealed common mutations that increase susceptibility for schizophrenia (SZ) and bipolar disorder (BD), but the vast majority were not known to be functional or associated with these illnesses. To help fill this gap, their impact on human brain structure and function has been examined. We systematically discuss this output to facilitate its timely integration in the psychosis research field; and encourage reflection for future research. Irrespective of imaging modality, studies addressing the effect of SZ/BD GWAS risk genes (ANK3, CACNA1C, MHC, TCF4, NRGN, DGKH, PBRM1, NCANandZNF804A) were included. Most GWAS risk variations were reported to affect neuroimaging phenotypes implicated in SZ/BD: white-matter integrity (ANK3andZNF804A), volume (CACNA1CandZNF804A) and density (ZNF804A); grey-matter (CACNA1C, NRGN, TCF4andZNF804A) and ventricular (TCF4) volume; cortical folding (NCAN) and thickness (ZNF804A); regional activation during executive tasks (ANK3, CACNA1C, DGKH, NRGNandZNF804A) and functional connectivity during executive tasks (CACNA1CandZNF804A), facial affect recognition (CACNA1CandZNF804A) and theory-of-mind (ZNF804A); but inconsistencies and non-replications also exist. Further efforts such as standardizing reporting and exploring complementary designs, are warranted to test the reproducibility of these early findings.


Hypertension ◽  
2020 ◽  
Vol 75 (5) ◽  
pp. 1289-1295
Author(s):  
Lisanne M. Jenkins ◽  
Chaney R. Garner ◽  
Shawn Kurian ◽  
James P. Higgins ◽  
Todd B. Parrish ◽  
...  

High blood pressure (BP) negatively affects brain structure and function. Hypertension is associated with white matter hyperintensities, cognitive and mobility impairment in late-life. However, the impact of BP exposure from young adulthood on brain structure and function in mid-life is unclear. Identifying early brain structural changes associated with BP exposure, before clinical onset of cognitive dysfunction and mobility impairment, is essential for understanding mechanisms and developing interventions. We examined the effect of cumulative BP exposure from young adulthood on brain structure in a substudy of 144 (61 female) individuals from the CARDIA (Coronary Artery Risk Development in Young Adults) study. At year 30 (Y 30 , ninth visit), participants (56±4 years old) completed brain magnetic resonance imaging and gait measures (pace, rhythm, and postural control). Cumulative systolic and diastolic BP (cumulative systolic blood pressure, cDBP) over 9 visits were calculated, multiplying mean values between 2 consecutive visits by years between visits. Surface-based analysis of basal ganglia and thalamus was achieved using FreeSurfer-initiated Large Deformation Diffeomorphic Metric Mapping. Morphometric changes were regressed onto cumulative BP to localize regions of shape variation. Y 30 white matter hyperintensity volumes were small and positively correlated with cumulative BP but not gait. Negative morphometric associations with cumulative systolic blood pressure were seen in the caudate, putamen, nucleus accumbens, pallidum, and thalamus. A concave right medial putamen shape mediated the relationship between cumulative systolic blood pressure and stride width. Basal ganglia and thalamic morphometric changes, rather than volumes, may be earlier manifestation of gray matter structural signatures of BP exposure that impact midlife gait.


2017 ◽  
Vol 49 (5S) ◽  
pp. 824 ◽  
Author(s):  
X. r. Tan ◽  
Ivan C. C. Low ◽  
Mary C. Stephenson ◽  
T. Kok ◽  
Heinrich W. Nolte ◽  
...  

2011 ◽  
Vol 32 (6) ◽  
pp. 814-822 ◽  
Author(s):  
Linda L. Chao ◽  
Linda Abadjian ◽  
Jennifer Hlavin ◽  
Deiter J. Meyerhoff ◽  
Michael W. Weiner

Sign in / Sign up

Export Citation Format

Share Document