Preparation of highly efficient chitosan-based flame retardant coatings with good antibacterial properties for cotton fabrics

2022 ◽  
Vol 163 ◽  
pp. 106627
Author(s):  
Ghada Makhlouf ◽  
Aksam Abdelkhalik ◽  
Heba Ameen
2021 ◽  
Author(s):  
Ghada Makhlouf ◽  
aksam abdelkhalik ◽  
Heba Ameen

Abstract Synthesis of multi-function flame retardants is widely increasing to fulfil industrial and economic goals. In this work, a novel flame retardant, melamine salt of tannic phosphate (MTP) was prepared and characterized. MTP was mixed with polyvinyl alcohol (PVA) solution and used as a coating for cotton fabrics. In addition, tannic acid (TA) and melamine phosphate (MP) were mixed with PVA solution and applied as a coating for cotton fabrics. Vertical and horizontal flammability tests showed that the flame did not propagate in samples treated with PVA/MTP. In contrast, samples treated with PVA/TA/MP burnt completely. Limiting oxygen index (LOI) data indicated that samples treated with PVA/30%MTP reached LOI value 68.4%, while control sample had LOI value 17.1%. Smoke density results presented that PVA/MTP succeeded in reducing the maximum specific optical density (Ds max) of cotton fabrics. FTIR gas analyzer results manifested that addition of PVA/MTP to cotton fabrics decreased the emission of CO, CO2, C3H8, C2H6, C6H14 and formaldehyde in the gas phase. Fractional effective dose (FED) and lethal toxic potency (LC50) showed that samples coated with PVA/MTP are less toxic than blank. In addition, these fabrics exhibited a remarkable antibacterial property against gram-positive and gram-negative bacteria.


Author(s):  
Zhong Liu ◽  
Zhao Yu ◽  
Tang Qiaolin ◽  
Zhang Kaixin ◽  
Deng Weihao ◽  
...  

2021 ◽  
pp. 130556
Author(s):  
Wenhui Rao ◽  
Junjiao Shi ◽  
Chuanbai Yu ◽  
Hai-Bo Zhao ◽  
Yu-Zhong Wang

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1348
Author(s):  
Pamela Miśkiewicz ◽  
Magdalena Tokarska ◽  
Iwona Frydrych ◽  
Marcin Makówka

Innovative textile materials can be obtained by depositing different coatings. To improve the thermal properties of textiles, aluminum and zirconium (IV) oxides were deposited on the Nomex® fabric, basalt fabric, and cotton fabric with flame-retardant finishing using the magnetron sputtering method. An assessment of coating quality was conducted. Evenly coated fabric ensures that there are no places on the sample surface where the values of thermal parameters such as resistance to contact heat and radiant heat deviate significantly from the specified ones. Energy-dispersive spectroscopy was used for the analysis of modified fabric surfaces. Non-contact digital color imaging system DigiEye was also used. The criterion allowing one to compare surfaces and find which surface is more evenly coated was proposed. The best fabrics from the point of view of coating quality were basalt and cotton fabrics coated with aluminum as well as basalt fabric coated with zirconia. The probability of occurrence of places on the indicated sample surfaces where the values of thermal parameters (i.e., resistance to contact heat and radiant heat) deviated significantly from the specified ones was smaller for Nomex® and cotton fabrics coated with zirconia and Nomex® fabric coated with aluminum.


2011 ◽  
Vol 332-334 ◽  
pp. 77-80 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Hong Yang ◽  
Yun Liu ◽  
Ping Zhu

Cotton fabric with excellent antibacterial properties was obtained by treated with polyamide-amine (PAMAM) dendrimers as a carrier and silver nitrate as an antibacterial agent. The antibacterial cotton fabrics were prepared by the methods of one-bath process and two-bath process. Antibacterial activity of cotton fabrics treated by two different methods was good, but the antibacterial durability of cotton fabric treated with two-bath process was better than that treated with one-bath process. After 50 washing cycles, cotton fabric treated with two-bath process still had good antibacterial property and its inhibitory rate to Gram-positive S. aureus and Gram-negative E. coli was over 99 %. It was found that the breaking strength retention of finished cotton fabrics was 85.83 % and the decrease of cotton fabrics’ whiteness index was about 15 %.


Cellulose ◽  
2015 ◽  
Vol 22 (4) ◽  
pp. 2787-2796 ◽  
Author(s):  
Wei-Wei Gao ◽  
Guang-Xian Zhang ◽  
Feng-Xiu Zhang

Sign in / Sign up

Export Citation Format

Share Document