Topological imaging of turbulent premixed, prevaporized liquid fuel jet flames using CH (C-X) band PLIF

Author(s):  
Thomas A. McManus ◽  
Amirreza Gandomkar ◽  
Campbell Carter ◽  
Patton M. Allison
2016 ◽  
Vol 97 (3) ◽  
pp. 913-930 ◽  
Author(s):  
Naveen Punati ◽  
Haiou Wang ◽  
Evatt R. Hawkes ◽  
James C. Sutherland

Author(s):  
Veeraraghava Raju Hasti ◽  
Gaurav Kumar ◽  
Shuaishuai Liu ◽  
Robert P. Lucht ◽  
Jay P. Gore

2019 ◽  
Vol 37 (2) ◽  
pp. 2451-2459 ◽  
Author(s):  
Stefano Luca ◽  
Antonio Attili ◽  
Ermanno Lo Schiavo ◽  
Francesco Creta ◽  
Fabrizio Bisetti

2021 ◽  
pp. 1-36
Author(s):  
Sheikh Salauddin ◽  
Wilmer Flores ◽  
Michelle Otero ◽  
Bernhard Stiehl ◽  
Kareem Ahmed

Abstract Liquid fuel jet in Crossflow (LJIC) is a vital atomization technique significant to the aviation industry. The hydrodynamic instability mechanisms that drive a primary breakup of a transverse jet are investigated using modal and traveling wavelength analysis. This study highlights the primary breakup mechanisms for aviation fuel Jet-A, utilizing a method that could be applied to any liquid fuel. Mathematical decomposition techniques known as POD (Proper Orthogonal Decomposition) and Robust MrDMD (Multi-Resolution Dynamic Mode Decomposition) are used together to identify dominant instability flow dynamics associated with the primary breakup mechanism. Implementation of the Robust MrDMD method deconstructs the nonlinear dynamical systems into multiresolution time-scaled components to capture the intermittent coherent structures. The Robust MrDMD, in conjunction with the POD method, is applied to data points taken across the entire spray breakup regimes: enhanced capillary breakup, bag breakup, multimode breakup, and shear breakup. The dominant frequencies of breakup mechanisms are extracted and identified. These coherent structures are classified with an associated time scale and Strouhal number. Three primary breakup mechanisms, namely ligament shedding, bag breakup, and shear breakup, were identified and associated with the four breakup regimes outlined above. Further investigation portrays these breakup mechanisms to occur in conjunction with each other in each breakup regime, excluding the low Weber number Enhanced Capillary Breakup regime. Spectral analysis of the Robust MrDMD modes' entire temporal window reveals that while multiple breakup mechanisms are convolved, there is a dominant breakup route for each breakup regime. An associated particular traveling wavelength analysis further investigates each breakup mechanism. Lastly, this study explores the effects of an increased momentum flux ratio on each breakup mechanism associated with a breakup regime.


2020 ◽  
Vol 192 (11) ◽  
pp. 2189-2207
Author(s):  
Dominik Denker ◽  
Antonio Attili ◽  
Konstantin Kleinheinz ◽  
Heinz Pitsch

2019 ◽  
Vol 191 (9) ◽  
pp. 1677-1692 ◽  
Author(s):  
D. Denker ◽  
A. Attili ◽  
S. Luca ◽  
F. Bisetti ◽  
M. Gauding ◽  
...  

Author(s):  
Andrew R. Hutchins ◽  
James D. Kribs ◽  
Richard D. Muncey ◽  
Kevin M. Lyons

The aim of this investigation is to determine the effects of confinement on the stabilization of turbulent, lifted methane (CH4) jet flames. A confinement cylinder (stainless steel) separates the coflow from the ambient air and restricts excess room air from being entrained into the combustion chamber, and thus produces varying stabilization patterns. The experiments were executed using fully confined, semi-confined, and unconfined conditions, as well as by varying fuel flow rate and coflow velocity (ambient air flowing in the same direction as the fuel jet). Methane flames experience liftoff and blowout at well-known conditions for unconfined jets, however, it was determined that with semi-confined conditions the flame does not experience blowout. Instead of the conventional unconfined stabilization patterns, an intense, intermittent behavior of the flame was observed. This sporadic behavior of the flame, while under semi-confinement, was determined to be a result from the restricted oxidizer access as well as the asymmetrical boundary layer that forms due to the viewing window. While under full confinement the flame behaved in a similar method as while under no confinement (full ambient air access). The stable nature of the flame while fully confined lacked the expected change in leading edge fluctuations that normally occur in turbulent jet flames. These behaviors address the combustion chemistry (lack of oxygen), turbulent mixing, and heat release that combine to produce the observed phenomena.


Author(s):  
Кулманаков ◽  
S. Kulmanakov ◽  
Кирюшин ◽  
I. Kiryushin

The article contains a description of the experimental setup and the stent-speed video atomized fuel stream, applicable for the study of the jet sputtering process liquid fuel. In axial section shows information about the dynamics of the area of the normalized luminance zones in the diesel fuel jet injection pressure range of 60 MPa to 180 MPa


Sign in / Sign up

Export Citation Format

Share Document