Developing lacustrine sedimentary records of storminess in southwestern New Zealand

2022 ◽  
Vol 277 ◽  
pp. 107355
Author(s):  
Sean Fitzsimons ◽  
Jamie Howarth
2021 ◽  
Author(s):  
◽  
Damian Orr

<p>Reinga Basin is located northwest of New Zealand, along strike structurally from Northland and has a surface area of ~150,000 km². The basin contains deformed Cretaceous and Cenozoic strata, flat unconformities interpreted as sea level-modulated erosion surfaces and is intruded by volcanics. Persistent submarine conditions and moderate water depths has led to preservation of fossil-rich bathyal sedimentary records. This thesis presents the first seismic-stratigraphic analysis tied to dredged rock samples and recent International Ocean Discovery Program (IODP) drilling. The Cenozoic tectonic evolution of Reinga Basin comprises four main phases. (1) Folding and uplift from lower bathyal water depths occurred at 56-43 Ma along West Norfolk Ridge to produce wave ravinement surfaces. This phase of deformation in Reinga Basin pre-dates tectonic events onshore New Zealand. (2) Basin-wide 39-34 Ma compression and reverse faulting exposed early to middle Eocene strata at the seabed. This phase of deformation is also observed farther south in Taranaki. (3) Oligocene uplift is recorded by late Oligocene shallow-water fauna at Site U1508, and led to a 6 Myr hiatus (34-28 Ma) associated with flat wave ravinement surfaces nearby. The unconformity is temporally associated with: normal faulting near West Norfolk Ridge that created topography of Wanganella Ridge; onset of Reinga Basin volcanism; and emplacement of South Maria Allochthon. Thin-skinned deformation and volcanism post-date thick-skinned reverse faulting and folding. The end of reverse faulting near South Maria Ridge is determined from undeformed Oligocene strata that have subsided 1500-2000 m since 36-30 Ma. (4) During the final phase of Reinga Basin deformation, South Maria Ridge subsided ~900-1900 m from middle shelf to bathyal depths from 23-19 Ma. Deformation migrated southeastwards, culminating in Northland Allochthon emplacement (23-20 Ma) and onshore arc volcanism at 23-12 Ma. Eocene onset of tectonic activity in northern New Zealand is shown to be older than previously recognised and it was broadly synchronous with other events related to subduction initiation and plate motion change elsewhere in the western Pacific.</p>


2021 ◽  
Author(s):  
◽  
Damian Orr

<p>Reinga Basin is located northwest of New Zealand, along strike structurally from Northland and has a surface area of ~150,000 km². The basin contains deformed Cretaceous and Cenozoic strata, flat unconformities interpreted as sea level-modulated erosion surfaces and is intruded by volcanics. Persistent submarine conditions and moderate water depths has led to preservation of fossil-rich bathyal sedimentary records. This thesis presents the first seismic-stratigraphic analysis tied to dredged rock samples and recent International Ocean Discovery Program (IODP) drilling. The Cenozoic tectonic evolution of Reinga Basin comprises four main phases. (1) Folding and uplift from lower bathyal water depths occurred at 56-43 Ma along West Norfolk Ridge to produce wave ravinement surfaces. This phase of deformation in Reinga Basin pre-dates tectonic events onshore New Zealand. (2) Basin-wide 39-34 Ma compression and reverse faulting exposed early to middle Eocene strata at the seabed. This phase of deformation is also observed farther south in Taranaki. (3) Oligocene uplift is recorded by late Oligocene shallow-water fauna at Site U1508, and led to a 6 Myr hiatus (34-28 Ma) associated with flat wave ravinement surfaces nearby. The unconformity is temporally associated with: normal faulting near West Norfolk Ridge that created topography of Wanganella Ridge; onset of Reinga Basin volcanism; and emplacement of South Maria Allochthon. Thin-skinned deformation and volcanism post-date thick-skinned reverse faulting and folding. The end of reverse faulting near South Maria Ridge is determined from undeformed Oligocene strata that have subsided 1500-2000 m since 36-30 Ma. (4) During the final phase of Reinga Basin deformation, South Maria Ridge subsided ~900-1900 m from middle shelf to bathyal depths from 23-19 Ma. Deformation migrated southeastwards, culminating in Northland Allochthon emplacement (23-20 Ma) and onshore arc volcanism at 23-12 Ma. Eocene onset of tectonic activity in northern New Zealand is shown to be older than previously recognised and it was broadly synchronous with other events related to subduction initiation and plate motion change elsewhere in the western Pacific.</p>


2019 ◽  
Vol 33 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Christopher Gomez ◽  
Deirdre E. Hart ◽  
Patrick Wassmer ◽  
Imai Kenta ◽  
Hiroki Matsui ◽  
...  

The question of whether or not we agree with the term Anthropocene becomes inconsequential when examining coastal environments. With few exceptions, anthropogenic encroachment on, and reshaping of, the global coastal zone is evident from space via multiple spectral views. Humans have become one of the dominant agents of coastal system change during the latest part of their relatively short existence, and nowhere is the humanization of coastal landscapes more evident than on islands. Using three island nations characterized by different stages and styles of coastal development – New Zealand, Japan, and Indonesia - we investigate the role of anthropogenic activity in coastal evolution, geomorphology and sediment records. Using field investigations, Geographical Information System (GIS) analyses, and mathematical and conceptual models, we reveals how anthropogenic activity influences processes at multiple time and space scales, with enduring effects. Our first anthropogenic impact investigation focusses on the potential effects of sea level rise (SLR) due to anthropogenic climate change. Using the earthquake-induced land-subsidence experienced in Christchurch, New Zealand, as a relative SLR example (‘Laboratory Christchurch’), evidence shows that coastal settlements are likely to be impacted not only at the shore but further inland via coast- connected waterways, where drainage is impeded due to an increase in the base level of that is the sea. Relative SLR makes it more difficult to evacuate water from subaerial and subsurface hydrosystems, and simulations show that future SLR is also likely to temporarily reduce some rivermouth sediment discharges, creating the potential for accelerated erosion in river-coast interface environments. In addition to flow-on effects from waterways, coastlines themselves have been highly affected by human activity over recent decades to centuries. In Tokyo, the shoreline has undergone artificial progradation, in places by more than 2 km, where concrete has supplanted mudflats, often at elevations above the hinterland of reclaimed areas. In addition to changes in Tokyo’s unconsolidated shores, consolidated coastal cliffs have been modified with the removal of natural talus buffers, again increasing the potential for erosion acceleration. Finally, in our third example, studies of the 2004 Indian Ocean tsunami and the 2011 Tohoku tsunami show that anthropogenic activities and structures play an important role in controlling the erosion and depostion of sediments during extreme events. A chronology of tsunami deposits from the Tohoku coast shows that sedimentary records from tsunami events have become thinner in recent centuries, independent of the incident tsunami wave hydrodynamics, and in relation to increasing levels of coastal plain, shoreline and nearshore development. In light of these multi-scale and multi-process effects, we argue that the Anthropocene is clearly distinguishable from the Holocene in coastal environments due to the significantly stronger signatures of human influence that characterise the former time period.


1999 ◽  
Vol 190 ◽  
pp. 563-566
Author(s):  
J. D. Pritchard ◽  
W. Tobin ◽  
J. V. Clausen ◽  
E. F. Guinan ◽  
E. L. Fitzpatrick ◽  
...  

Our collaboration involves groups in Denmark, the U.S.A. Spain and of course New Zealand. Combining ground-based and satellite (IUEandHST) observations we aim to determine accurate and precise stellar fundamental parameters for the components of Magellanic Cloud Eclipsing Binaries as well as the distances to these systems and hence the parent galaxies themselves. This poster presents our latest progress.


Author(s):  
Ronald S. Weinstein ◽  
N. Scott McNutt

The Type I simple cold block device was described by Bullivant and Ames in 1966 and represented the product of the first successful effort to simplify the equipment required to do sophisticated freeze-cleave techniques. Bullivant, Weinstein and Someda described the Type II device which is a modification of the Type I device and was developed as a collaborative effort at the Massachusetts General Hospital and the University of Auckland, New Zealand. The modifications reduced specimen contamination and provided controlled specimen warming for heat-etching of fracture faces. We have now tested the Mass. General Hospital version of the Type II device (called the “Type II-MGH device”) on a wide variety of biological specimens and have established temperature and pressure curves for routine heat-etching with the device.


Author(s):  
Sidney D. Kobernick ◽  
Edna A. Elfont ◽  
Neddra L. Brooks

This cytochemical study was designed to investigate early metabolic changes in the aortic wall that might lead to or accompany development of atherosclerotic plaques in rabbits. The hypothesis that the primary cellular alteration leading to plaque formation might be due to changes in either carbohydrate or lipid metabolism led to histochemical studies that showed elevation of G-6-Pase in atherosclerotic plaques of rabbit aorta. This observation initiated the present investigation to determine how early in plaque formation and in which cells this change could be observed.Male New Zealand white rabbits of approximately 2000 kg consumed normal diets or diets containing 0.25 or 1.0 gm of cholesterol per day for 10, 50 and 90 days. Aortas were injected jin situ with glutaraldehyde fixative and dissected out. The plaques were identified, isolated, minced and fixed for not more than 10 minutes. Incubation and postfixation proceeded as described by Leskes and co-workers.


1998 ◽  
Vol 36 (5) ◽  
pp. 255-262
Author(s):  
SIMPANYA ◽  
JARVIS ◽  
BAXTER

Sign in / Sign up

Export Citation Format

Share Document