Safe physical human-robot interaction: A quasi whole-body sensing method based on novel laser-ranging sensor ring pairs

2022 ◽  
Vol 75 ◽  
pp. 102280
Author(s):  
Keke Qi ◽  
Zhibin Song ◽  
Jian S. Dai
2019 ◽  
Vol 16 (4) ◽  
pp. 172988141986318 ◽  
Author(s):  
Xin Wang ◽  
Qiuzhi Song ◽  
Shitong Zhou ◽  
Jing Tang ◽  
Kezhong Chen ◽  
...  

In this article, a method of multi-connection load compensation and load information calculation for an upper-limb exoskeleton is proposed based on a six-axis force/torque sensor installed between the exoskeleton and the end effector. The proposed load compensation method uses a mounted sensor to measure the force and torque between the exoskeleton and load of different connections and adds a compensator to the controller to compensate the component caused by the load in the human–robot interaction force, so that the human–robot interaction force is only used to operate the exoskeleton. Therefore, the operator can manipulate the exoskeleton with the same interaction force to lift loads of different weights with a passive or fixed connection, and the human–robot interaction force is minimized. Moreover, the proposed load information calculation method can calculate the weight of the load and the position of its center of gravity relative to the exoskeleton and end effector accurately, which is necessary for acquiring the upper-limb exoskeleton center of gravity and stability control of whole-body exoskeleton. In order to verify the effectiveness of the proposed method, we performed load handling and operational stability experiments. The experimental results showed that the proposed method realized the expected function.


Author(s):  
Eiichi Yoshida

This article provides a brief overview of the technology of humanoid robots. First, historical development and hardware progress are presented mainly on human-size full-body biped humanoid robots, together with progress in pattern generation of biped locomotion. Then, «whole-body motion» – coordinating leg and arm movements to fully leverage humanoids’ high degrees of freedom – is presented, followed by its applications in fields such as device evaluation and large-scale assembly. Upper-body humanoids with a mobile base, which are mainly utilized for research on human-robot interaction and cognitive robotics, are also introduced before addressing current issues and perspectives.


2009 ◽  
Vol 27 (6) ◽  
pp. 669-678
Author(s):  
Tomoyuki Noda ◽  
Takahiro Miyashita ◽  
Hiroshi Ishiguro ◽  
Norihiro Hagita

2018 ◽  
Vol 3 (1) ◽  
pp. 516-523 ◽  
Author(s):  
Francesco Romano ◽  
Gabriele Nava ◽  
Morteza Azad ◽  
Jernej Camernik ◽  
Stefano Dafarra ◽  
...  

2009 ◽  
Author(s):  
Matthew S. Prewett ◽  
Kristin N. Saboe ◽  
Ryan C. Johnson ◽  
Michael D. Coovert ◽  
Linda R. Elliott

2010 ◽  
Author(s):  
Eleanore Edson ◽  
Judith Lytle ◽  
Thomas McKenna

Sign in / Sign up

Export Citation Format

Share Document