Region-based path planning method with all horizontal welding position for robotic curved layer wire and arc additive manufacturing

2022 ◽  
Vol 74 ◽  
pp. 102286
Author(s):  
Zeqi Hu ◽  
Lin Hua ◽  
Xunpeng Qin ◽  
Mao Ni ◽  
Zhimin Liu ◽  
...  
2020 ◽  
Vol 26 (8) ◽  
pp. 1405-1420
Author(s):  
Fusheng Dai ◽  
Haiou Zhang ◽  
Runsheng Li

Purpose The study aims to fabricate large metal components with overhangs built on cylindrical or conical surfaces with a high dimensional precision. It proposes methods to address the problems of generating tool-paths on cylindrical or conical surfaces simply and precisely, and planning the welding process on these developable surfaces. Design/methodology/approach The paper presents the algorithm of tool-paths planning on conical surfaces using a parametric slicing equation and a spatial mapping method and deduces the algorithm of five-axis transformation by addressing the rotating question of two sequential points. The welding process is investigated with a regression fitting model on a flat surface, and experimented on a conical surface, which can be flattened onto a flat surface. Findings The paper provides slicing and path-mapping expressions for cylindrical and conical surfaces and a curvature-speed-width (CSW) model for wire and arc additive manufacturing to improve the surface appearances. The path-planning method and CSW model can be applied in the five-axis fabrication of the prototype of an underwater thruster. The CSW model has a confidence coefficient of 98.02% and root mean squared error of 0.2777 mm. The reverse measuring of the finished blades shows the residual deformation: an average positive deformation of about 0.5546 mm on one side of the blades and an average negative deformation of about −0.4718 mm on the other side. Research limitations/implications Because of the chosen research approach, the research results may lack generalizability for the fabrication based on arbitrary surfaces. Originality/value This paper presented an integrated slicing, tool-path planning and welding process planning method for five-axis wire and arc additive manufacturing.


Author(s):  
Kevin Castelli ◽  
Ahmed Magdy Ahmed Zaki ◽  
Anikethan Yenjalagere Balakrishnappa ◽  
Marco Carnevale ◽  
Hermes Giberti

Author(s):  
Gang Zhao ◽  
Guocai Ma ◽  
Wenlei Xiao ◽  
Yu Tian

Additive manufacturing has been developed for decades and attracts significant research interests in recent years. Usually, the stereolithography tessellation language format is employed in additive manufacturing to represent the geometric data. However, people gradually realize the inevitable drawbacks of the stereolithography tessellation language file format, such as redundancy, inaccuracy, missing of feature definitions, and lack of integrity. In addition, it is almost impossible to apply the simple polygonal facet representation to the five-axis manufacturing strategy. Hence, there are quite few researches and applications on the five-axis additive manufacturing, in spite of its common applications in the subtractive machining. This article proposes a feature-based five-axis additive manufacturing methodology to enhance and extend the additive manufacturing method. The additive manufacturing features are defined and categorized into two5D_AM_feature and freeform_AM_feature. A feature extraction method is proposed that can automatically recognize the additive manufacturing features from the input model. Specially for the freeform_AM_feature, a five-axis path planning method is proposed and split into three stages: (1) offset the reference surface, (2) spatially slice the freeform layers, and (3) generate the toolpaths for each freeform layer. Real additive manufacturing five-axis toolpaths can be obtained using the proposed algorithm that performs as a secondary developed plug-in in the CATIA® environment. A robotic additive manufacturing system is constructed for the implementation of the five-axis additive manufacturing tasks, which are generated by the proposed algorithms and post-processed after simulation and off-line programming. Some examples are printed to validate the feasibility and efficiency of the proposed method.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 135513-135523
Author(s):  
Qingfeng Yao ◽  
Zeyu Zheng ◽  
Liang Qi ◽  
Haitao Yuan ◽  
Xiwang Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document