Rapid construction method of equipment model for discrete manufacturing digital twin workshop system

2022 ◽  
Vol 75 ◽  
pp. 102309
Author(s):  
Yueze Zhang ◽  
Caixia Zhang ◽  
Jun Yan ◽  
Congbin Yang ◽  
Zhifeng Liu
Author(s):  
Maja Bärring ◽  
Björn Johansson ◽  
Goudong Shao

Abstract The manufacturing sector is experiencing a technological paradigm shift, where new information technology (IT) concepts can help digitize product design, production systems, and manufacturing processes. One of such concepts is Digital Twin and researchers have made some advancement on both its conceptual development and technological implementations. However, in practice, there are many different definitions of the digital-twin concept. These different definitions have created a lot of confusion for practitioners, especially small- and medium-sized enterprises (SMEs). Therefore, the adoption and implementation of the digital-twin concept in manufacturing have been difficult and slow. In this paper, we report our findings from a survey of companies (both large and small) regarding their understanding and acceptance of the digital-twin concept. Five supply-chain companies from discrete manufacturing and one trade organization representing suppliers in the automotive business were interviewed. Their operations have been studied to understand their current digital maturity levels and articulate their needs for digital solutions to stay competitive. This paper presents the results of the research including the viewpoints of these companies in terms of opportunities and challenges for implementing digital twins.


2021 ◽  
Author(s):  
Luyao Xia ◽  
Lu Jianfeng ◽  
Hao Zhang ◽  
Mengying Xu ◽  
Zhaojia Li ◽  
...  

Abstract Many enterprises have built their own digital twin factory model for physical factory planning, simulation optimization and real-time monitoring. However, the digital twin system, which has a single field, a short time cycle and unsinkable service, cannot fully reflect the interaction and integration of the physical and information world required by intelligent manufacturing. Therefore, the research on the construction method of the smart factory digital twin system with cross-domain and multi-model has an important influence on the application of smart manufacturing. In view of the above problems, this paper proposes the concept and composition of digital twin manufacturing ecosystem (DTMEs) based on the requirements and characteristics of product lifecycle, and analyzes the construction requirements of DTMEs for factory digital twin system, product digital twin system and supply chain digital twin system from the perspective of lifecycle. Finally, the smart factory digital twin system architecture is applied to the digital and intelligent upgrading of the hydraulic cylinder factory. The experimental results show that the intelligent improvement of the hydraulic factory, the reduction of Work-in-process inventory and the advance of delivery time, and prove the feasibility and effectiveness of the smart factory digital twin system.


2021 ◽  
Author(s):  
Yanhong Zhu ◽  
Danyang Chen ◽  
Cheng Zhou ◽  
Lu Lu ◽  
Xiaodong Duan

2021 ◽  
Vol 1884 (1) ◽  
pp. 012006
Author(s):  
LIU Zhifeng ◽  
ZHANG Yueze ◽  
ZHANG Caixia ◽  
YAN Jun ◽  
GUO Shiyao

Sign in / Sign up

Export Citation Format

Share Document