scholarly journals Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia

Redox Biology ◽  
2021 ◽  
pp. 102103
Author(s):  
Tetsuro Ishii ◽  
Eiji Warabi ◽  
Giovanni E. Mann
2004 ◽  
Vol 164 (6) ◽  
pp. 811-817 ◽  
Author(s):  
Carlo Iomini ◽  
Karla Tejada ◽  
Wenjun Mo ◽  
Heikki Vaananen ◽  
Gianni Piperno

We identified primary cilia and centrosomes in cultured human umbilical vein endothelial cells (HUVEC) by antibodies to acetyl-α-tubulin and capillary morphogenesis gene-1 product (CMG-1), a human homologue of the intraflagellar transport (IFT) protein IFT-71 in Chlamydomonas. CMG-1 was present in particles along primary cilia of HUVEC at interphase and around the oldest basal body/centriole at interphase and mitosis. To study the response of primary cilia and centrosomes to mechanical stimuli, we exposed cultured HUVEC to laminar shear stress (LSS). Under LSS, all primary cilia disassembled, and centrosomes were deprived of CMG-1. We conclude that the exposure to LSS ends the IFT in cultured endothelial cells.


2019 ◽  
Vol 245 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Lan Jia ◽  
Lihua Wang ◽  
Fang Wei ◽  
Chen Li ◽  
Zhe Wang ◽  
...  

Hemodynamic forces have an important role in venous intimal hyperplasia, which is the main cause of arteriovenous fistula dysfunction. Endothelial cells (ECs) constantly exposed to the shear stress of blood flow, converted the mechanical stimuli into intracellular signals, and interacted with the underlying vascular smooth muscle cells (VSMCs). Caveolin-1 is one of the important mechanoreceptors on cytomembrane, which is related to vascular abnormalities. Extracellular signal-regulated kinase1/2 (ERK1/2) pathway is involved in the process of VSMCs proliferation and migration. In the present study, we explore the effects of Caveolin-1-ERK1/2 pathway and uremia toxins on the endothelial cells and VSMCs following shear stress application. Different shear stress was simulated with a ECs/VSMCs cocultured parallel-plate flow chamber system. Low shear stress and oscillating shear stress up-regulated the expression of fibroblast growth factor-4, platelet-derived growth factor-BB, vascular endothelial growth factor-A, ERK1/2 phosphorylation in endothelial cells, and proliferation and migration of VSMCs but down-regulated the Caveolin-1 expression in endothelial cells. Uremia toxin induces the proliferation and migration of VSMCs but not in a Caveolin-1-dependent manner in the static environment. Low shear stress-induced proliferation and migration of VSMCs is inhibited by Caveolin-1 overexpression and ERK1/2 suppression. Shear stress-regulated VSMC proliferation and migration is an endothelial cells-dependent process. Low shear stress and oscillating shear stress exert atherosclerotic influences on endothelial cells and VSMCs. Low shear stress modulated proliferation and migration of VSMCs through Caveolin-1-ERK1/2 pathway, which suggested that Caveolin-1 and ERK1/2 can be used as a new therapeutic target for the treatment of arteriovenous fistula dysfunction. Impact statement Venous intimal hyperplasia is the leading cause of arteriovenous fistula (AVF) dysfunction. This article reports that shear stress-regulated vascular smooth muscle cells (VSMCs) proliferation and migration is an endothelial cell (EC)-dependent process. Low shear stress (LSS) and oscillating shear stress (OSS) exert atherosclerotic influences on the ECs and VSMCs. LSS-induced proliferation and migration of VSMCs is inhibited by Caveolin-1 overexpression and extracellular signal-regulated kinase1/2 (ERK1/2) suppression, which suggested that Caveolin-1 and ERK1/2 can be used as a new therapeutic target for the treatment of AVF dysfunction.


2020 ◽  
Vol 78 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Yiwei Zhao ◽  
Peile Ren ◽  
Qiufang Li ◽  
Shafiu Adam Umar ◽  
Tan Yang ◽  
...  

Abstract Atherosclerosis is a significant cause of mortality and morbidity. Studies suggest that the chemokine receptor CX3CR1 plays a critical role in atherogenesis. Shear stress is an important mechanical force that affects blood vessel function. In this study, we investigated the effect of shear stress on CX3CR1 expression in vascular endothelial cells (VECs). First, cells were exposed to different shear stress and then CX3CR1 mRNA and protein were measured by quantitative RT-PCR and western blot analysis, respectively. CX3CR1 gene silencing was used to analyze the molecular mechanisms underlying shear stress-mediated effects on CX3CR1 expression. CX3CR1 mRNA and protein expression were significantly increased with 4.14 dyne/cm2 of shear stress compared with other tested levels of shear stress. We observed a significant increase in CX3CR1 mRNA levels at 2 h and CX3CR1 protein expression at 4 h. CX3CR1-induced VCAM-1 expression in response to low shear stress by activating NF-κB signaling pathway in VECs. Our findings demonstrate that low shear stress increases CX3CR1 expression, which increases VCAM-1 expression due to elevated NF-κB activation. The current study provides evidence of the correlation between shear stress and atherosclerosis mediated by CX3CR1.


2018 ◽  
Vol 233 (6) ◽  
pp. 5058-5069 ◽  
Author(s):  
Li-Hong Wu ◽  
Hao-Chun Chang ◽  
Pei-Ching Ting ◽  
Danny L. Wang

2006 ◽  
Vol 38 (Supplement) ◽  
pp. S4
Author(s):  
Joon Y. Park ◽  
Iain K. Farrance ◽  
Hanjoong Jo ◽  
Steven R. Brant ◽  
Stephen M. Roth ◽  
...  

Endothelium ◽  
2007 ◽  
Vol 14 (6) ◽  
pp. 265-273 ◽  
Author(s):  
Min Cheng ◽  
Jiang Wu ◽  
Xiaoheng Liu ◽  
Yi Li ◽  
Yongmei Nie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document