Beyond treatment technology: Understanding motivations and barriers for wastewater treatment and reuse in unconventional energy production

2022 ◽  
Vol 177 ◽  
pp. 106011
Author(s):  
Cristian A Robbins ◽  
Xuewei Du ◽  
Thomas H Bradley ◽  
Jason C Quinn ◽  
Todd M Bandhauer ◽  
...  
2022 ◽  
Vol 178 ◽  
pp. 106036
Author(s):  
Cristian A. Robbins ◽  
Xuewei Du ◽  
Thomas H. Bradley ◽  
Jason C. Quinn ◽  
Todd M. Bandhauer ◽  
...  

1982 ◽  
Vol 14 (1-2) ◽  
pp. 121-133
Author(s):  
C Forsberg ◽  
B Hawerman ◽  
B Hultman

Experience from advanced municipal wastewater treatment plants and recovery of polluted waters are described for the last ten years in Sweden. Except in municipalities with large recipients, the urban population is served by treatment plants with combined biological and chemical treatment. Most of these plants are post-precipitation plants. Several modified operational modes have been developed in order to improve the removal efficiencies of pollutants and to reduce the costs. Results are presented on the recovery of specially investigated lakes with a lowered supply of total phosphorus and organic matter.


2021 ◽  
Vol 412 ◽  
pp. 128612
Author(s):  
Himadri Rajput ◽  
Eilhann E. Kwon ◽  
Sherif A. Younis ◽  
Seunghyun Weon ◽  
Tae Hwa Jeon ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 8057
Author(s):  
Mostafa Ghasemi ◽  
Mehdi Sedighi ◽  
Yie Hua Tan

In this paper, we reported the fabrication, characterization, and application of carbon nanotube (CNT)-platinum nanocomposite as a novel generation of cathode catalyst in microbial fuel cells (MFCs) for sustainable energy production and wastewater treatment. The efficiency of the carbon nanocomposites was compared by platinum (Pt), which is the most effective and common cathode catalyst. This nanocomposite is utilized to benefit from the catalytic properties of CNTs and reduce the amount of required Pt, as it is an expensive catalyst. The CNT/Pt nanocomposites were synthesized via a chemical reduction technique and the electrodes were characterized by field emission scanning electron microscopy, electronic dispersive X-Ray analysis, and transmission electron microscopy. The nanocomposites were applied as cathode catalysts in the MFC to obtain polarization curve and coulombic efficiency (CE) results. The catalytic properties of electrodes were tested by linear sweep voltammetry. The CNT/Pt at the concentration of 0.3 mg/cm2 had the highest performance in terms of CE (47.16%), internal resistance (551 Ω), COD removal (88.9%), and power generation (143 mW/m2). In contrast, for the electrode with 0.5 mg/L of Pt catalyst, CE, internal resistance, COD removal, and power generation were 19%, 810 Ω, 96%, and 84.1 mW/m2, respectively. So, it has been found that carbon nanocomposite cathode electrodes had better performance for sustainable clean energy production and COD removal by MFC.


2012 ◽  
Vol 535-537 ◽  
pp. 2201-2208
Author(s):  
Yong Wang ◽  
Jie Nian Jie ◽  
Zhi Yong Li ◽  
Li Guo Wang ◽  
Jiang Wu ◽  
...  

Oily sewage is one of the wastes produced in the oil industry production process and its quantity has been increasing year by year, which influences the environment and human health severely. Electric flocculation method is one of the wide application electrochemical treatment technologies for the oily wastewater treatment at home and abroad, which has higher efficiency than other technologies at the aspect of the organic pollutants degradation. A simulative experiment device dealing with heavy oil sewage by the electric flocculation method has been designed in this paper. The mechanism of the electric flocculation method in removing organic matter of the heavy oil sewage by analyzing the change of the composition and content of the organic matter in water samples before and after the process of the electric flocculation has been studied. Research results show: the carbon/tin dioxide electrode is better than the carbon/ ruthenium dioxide electrode in removing organic matter; most alkanes matters in the oily wastewater have been removed in the dispersing oil form by the electric flocculation; as the current density increases, the types and quantity of the response organic matter can be improved while types of the new synthetic organics increase. At the same time, this paper provides a theory support in specific optimization of the electricity flocculation flotation in oily wastewater treatment technology and process.


2013 ◽  
Vol 295-298 ◽  
pp. 1372-1375 ◽  
Author(s):  
Guang Wei Liu ◽  
Run Cai Bai

The main formation condition and harmfulness of the acidic mining waste water's were analyzed in this paper. The treatment technology of the acid mine drainage's was briefly introduced. The research development of acid mine drainage was summarized in recent years. It was the fact that developing the efficient, cheap, safe and easy treatment technology of acid mine should be necessary and inevitably and some success management experiences of acidic waste water were applied in acidic mining wastewater.


Solar Energy ◽  
2018 ◽  
Vol 173 ◽  
pp. 470-477 ◽  
Author(s):  
John Albino Dominic ◽  
Purnima Somathilake ◽  
Gopal Achari ◽  
Cooper H. Langford ◽  
Joo-Hwa Tay

Sign in / Sign up

Export Citation Format

Share Document