A thermodynamics-guided framework to design lightweight aggregate from waste coal combustion fly ash

2022 ◽  
Vol 178 ◽  
pp. 106050
Author(s):  
Mohammad Balapour ◽  
Thiha Thway ◽  
Rathin Rao ◽  
Newell Moser ◽  
Edward J. Garboczi ◽  
...  
1996 ◽  
Vol 43 (2) ◽  
pp. 41-49
Author(s):  
Wan-Tae Kim ◽  
Sung-Oh Lee ◽  
Bang-Sup Shin

2020 ◽  
Vol 48 (11) ◽  
pp. 1356-1364
Author(s):  
Jun HAN ◽  
Yang-shuo LIANG ◽  
Bo ZHAO ◽  
Zi-jiang XIONG ◽  
Lin-bo QIN ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1267
Author(s):  
David Längauer ◽  
Vladimír Čablík ◽  
Slavomír Hredzák ◽  
Anton Zubrik ◽  
Marek Matik ◽  
...  

Large amounts of coal combustion products (as solid products of thermal power plants) with different chemical and physical properties cause serious environmental problems. Even though coal fly ash is a coal combustion product, it has a wide range of applications (e.g., in construction, metallurgy, chemical production, reclamation etc.). One of its potential uses is in zeolitization to obtain a higher added value of the product. The aim of this paper is to produce a material with sufficient textural properties used, for example, for environmental purposes (an adsorbent) and/or storage material. In practice, the coal fly ash (No. 1 and No. 2) from Czech power plants was firstly characterized in detail (X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), particle size measurement, and textural analysis), and then it was hydrothermally treated to synthetize zeolites. Different concentrations of NaOH, LiCl, Al2O3, and aqueous glass; different temperature effects (90–120 °C); and different process lengths (6–48 h) were studied. Furthermore, most of the experiments were supplemented with a crystallization phase that was run for 16 h at 50 °C. After qualitative product analysis (SEM-EDX, XRD, and textural analytics), quantitative XRD evaluation with an internal standard was used for zeolitization process evaluation. Sodalite (SOD), phillipsite (PHI), chabazite (CHA), faujasite-Na (FAU-Na), and faujasite-Ca (FAU-Ca) were obtained as the zeolite phases. The content of these zeolite phases ranged from 2.09 to 43.79%. The best conditions for the zeolite phase formation were as follows: 4 M NaOH, 4 mL 10% LiCl, liquid/solid ratio of 30:1, silica/alumina ratio change from 2:1 to 1:1, temperature of 120 °C, process time of 24 h, and a crystallization phase for 16 h at 50 °C.


2020 ◽  
Vol 5 (3) ◽  
pp. 1193-1198
Author(s):  
Henilkumar M. Lankapati ◽  
Dharmesh R. Lathiya ◽  
Lalita Choudhary ◽  
Ajay K. Dalai ◽  
Kalpana C. Maheria

2016 ◽  
Vol 135 ◽  
pp. 148-157 ◽  
Author(s):  
Payam Shafigh ◽  
Mohammad A. Nomeli ◽  
U. Johnson Alengaram ◽  
Hilmi Bin Mahmud ◽  
Mohd Zamin Jumaat

2018 ◽  
Vol 761 ◽  
pp. 73-78 ◽  
Author(s):  
Matej Špak ◽  
Pavel Raschman

Alkali-activated materials based on fly ash are widely developed and also produced on the present. Some of fly ashes are not suitable for production of alkali-activated materials because of their inconvenient chemical composition. Alumina-silicates are the most important components that are needed to accomplish the successful reaction. The proper content of amorphous phase of alumina-silicates and its proportion as well should be provided for the final composition of alkali-activated materials. The influence of pure aluminum oxide powder as well as raw milled natural perlite on mechanical properties and durability of alkali-activated mortars was investigated. These minerals were used as partial replacement of fly ash coming from black coal combustion. In addition, the mortars were prepared by using different alkali activators.


Sign in / Sign up

Export Citation Format

Share Document