Development of sustainable microwave-based approach to recover glass fibers for wind turbine blades composite waste

2022 ◽  
Vol 179 ◽  
pp. 106107
Author(s):  
Manjeet Rani ◽  
Priyanka Choudhary ◽  
Venkata Krishnan ◽  
Sunny Zafar
2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Daniel D. Samborsky ◽  
Timothy J. Wilson ◽  
Pancasatya Agastra ◽  
John F. Mandell

Delamination at ply drops in composites with thickness tapering has been a concern in applications of carbon fibers. This study explored the resistance to delamination under fatigue loading of carbon and glass fiber prepreg laminates with the same resin system, containing various ply drop geometries, and using thicker plies typical of wind turbine blades. Applied stress and strain levels to produce significant delamination at ply drops have been determined, and the experimental results correlated through finite element and analytical models. Carbon fiber laminates with ply drops, while performing adequately under static loads, delaminated in fatigue at low maximum strain levels except for the thinnest ply drops. The lower elastic modulus of the glass fiber laminates resulted in much higher strains to produce delamination for equivalent ply drop geometries. The results indicate that ply drops for carbon fibers should be much thinner than those commonly used for glass fibers in wind turbine blades.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2761
Author(s):  
Chainuson Kasagepongsan ◽  
Sunisa Suchat

The objective of this study was to investigate nanocomposite materials with good outdoor resistance for wind turbine blade application. The nanocomposites based on epoxy resin with 5% of epoxidized natural rubber (ENR 50), 3% of nanofiller, and glass fibers, were subjected to experiments. The weathering resistance of nanocomposites was evaluated from the change in mechanical properties caused by accelerated aging, induced by UVB radiation in a weathering chamber. The accelerated aging improved tensile strength by about 35% at 168 h of exposure to UVB, via a curing effect. The nanocomposites were optimized for all the parts of wind turbine blades (Savonius and Darrieus types) that are generally designed for high strength, low weight, weathering resistance, and low rotational speed (2 m/s). A tree wind turbine with nanocomposite blades produced 5 kW power output when tested. Based on the findings in this work, the innovative nanocomposites have potential in manufacturing wind turbines to generate electricity.


2009 ◽  
Vol 129 (5) ◽  
pp. 689-695
Author(s):  
Masayuki Minowa ◽  
Shinichi Sumi ◽  
Masayasu Minami ◽  
Kenji Horii

2021 ◽  
Author(s):  
Aileen G. Bowen Perez ◽  
Giovanni Zucco ◽  
Paul Weaver

Author(s):  
Salete Alves ◽  
Luiz Guilherme Vieira Meira de Souza ◽  
Edália Azevedo de Faria ◽  
Maria Thereza dos Santos Silva ◽  
Ranaildo Silva

Sign in / Sign up

Export Citation Format

Share Document