The importance of GHG emissions from land use change for biofuels in Brazil: An assessment for current and 2030 scenarios

2022 ◽  
Vol 179 ◽  
pp. 106131
Author(s):  
Rodrigo Gomes Távora Maia ◽  
Hugo Bozelli
2017 ◽  
Vol 7 (1) ◽  
pp. e00125 ◽  
Author(s):  
Andrea Nocentini ◽  
John Field ◽  
Andrea Monti ◽  
Keith Paustian

2021 ◽  
Author(s):  
Wahaj Habib ◽  
John Connolly ◽  
Kevin McGuiness

<p>Peatlands are one of the most space-efficient terrestrial carbon stores. They cover approximately 3 % of the terrestrial land surface and account for about one-third of the total soil organic carbon stock. Peatlands have been under severe strain for centuries all over the world due to management related activities. In Ireland, peatlands span over approximately 14600 km<sup>2</sup>, and 85 % of that has already been degraded to some extent. To achieve temperature goals agreed in the Paris agreement and fulfil the EU’s commitment to quantifying the Carbon/Green House Gases (C/GHG) emissions from land use, land use change forestry, accurate mapping and identification of management related activities (land use) on peatlands is important.</p><p>High-resolution multispectral satellite imagery by European Space Agency (ESA) i.e., Sentinel-2 provides a good prospect for mapping peatland land use in Ireland. However, due to persistent cloud cover over Ireland, and the inability of optical sensors to penetrate the clouds makes the acquisition of clear sky imagery a challenge and hence hampers the analysis of the landscape. Google Earth Engine (a cloud-based planetary-scale satellite image platform) was used to create a cloud-free image mosaic from sentinel-2 data was created for raised bogs in Ireland (images collected for the time period between 2017-2020). A preliminary analysis was conducted to identify peatland land use classes, i.e., grassland/pasture, crop/tillage, built-up, cutover, cutaway and coniferous, broadleaf forests using this mosaicked image. The land-use classification results may be used as a baseline dataset since currently, no high-resolution peatland land use dataset exists for Ireland. It can also be used for quantification of land-use change on peatlands. Moreover, since Ireland will now be voluntarily accounting the GHG emissions from managed wetlands (including bogs), this data could also be useful for such type of assessment.</p>


2011 ◽  
Vol 1 (2) ◽  
pp. 224-232 ◽  
Author(s):  
Andre M. Nassar ◽  
Leila Harfuch ◽  
Luciane C. Bachion ◽  
Marcelo R. Moreira

The use of agricultural-based biofuels has expanded. Discussions on how to assess green house gas (GHG) emissions from biofuel policies, specifically on (non-observed) land-use change (LUC) effects involve two main topics: (i) the limitations on the existing methodologies, and (ii) how to isolate the effects of biofuels. This paper discusses the main methodologies currently used by policy-makers to take decisions on how to quantify LUCs owing to biofuel production expansion. It is our opinion that the concerns regarding GHG emissions associated with LUCs should focus on the agricultural sector as a whole rather than concentrating on biofuel production. Actually, there are several limitations of economic models and deterministic methodologies for simulating and explaining LUCs resulting from the expansion of the agricultural sector. However, it is equally true that there are avenues of possibilities to improve models and make them more accurate and precise in order to be used for policy-making. Models available need several improvements to reach perfection. Any top model requires a concentration of interdisciplinary designers in order to replicate empirical evidence and capture correctly the agricultural sector dynamics for different countries and regions. Forgetting those limitations means that models will be used for the wrong purposes.


2012 ◽  
Vol 03 (03) ◽  
pp. 1250015 ◽  
Author(s):  
ALLA A. GOLUB ◽  
THOMAS W. HERTEL

This paper reviews an analysis of land use change impacts of expanded biofuel production with GTAP-BIO computable general equilibrium (CGE) model. It describes the treatment of energy substitution, the role of biofuel by-products, specification of bilateral trade, the determination of land cover changes in response to increased biofuel feedstock production, and changes in crop yields – both at the intensive and extensive margins. The paper responds to some of the criticisms of GTAP-BIO and provides insights into the sensitivity of land use change and GHG emissions to changes in key parameters and assumptions. In particular, it considers an alternative specification of acreage response that takes into account the degree of land heterogeneity within agro-ecological zone (AEZ) for different AEZs and countries. The paper concludes with the discussion of alternative specifications of land mobility across uses employed in CGE models and the agenda for further research to narrow parametric and structural uncertainty to improve the model's performance.


2016 ◽  
Vol 18 (6) ◽  
pp. 1745-1758 ◽  
Author(s):  
Magdalena M. Czyrnek-Delêtre ◽  
Alessandro Chiodi ◽  
Jerry D. Murphy ◽  
Brian P. Ó Gallachóir

2015 ◽  
Vol 37 (3) ◽  
pp. 273 ◽  
Author(s):  
Beverley K. Henry ◽  
D. Butler ◽  
S. G. Wiedemann

In life cycle assessment studies, greenhouse gas (GHG) emissions from direct land-use change have been estimated to make a significant contribution to the global warming potential of agricultural products. However, these estimates have a high uncertainty due to the complexity of data requirements and difficulty in attribution of land-use change. This paper presents estimates of GHG emissions from direct land-use change from native woodland to grazing land for two beef production regions in eastern Australia, which were the subject of a multi-impact life cycle assessment study for premium beef production. Spatially- and temporally consistent datasets were derived for areas of forest cover and biomass carbon stocks using published remotely sensed tree-cover data and regionally applicable allometric equations consistent with Australia’s national GHG inventory report. Standard life cycle assessment methodology was used to estimate GHG emissions and removals from direct land-use change attributed to beef production. For the northern-central New South Wales region of Australia estimates ranged from a net emission of 0.03 t CO2-e ha–1 year–1 to net removal of 0.12 t CO2-e ha–1 year–1 using low and high scenarios, respectively, for sequestration in regrowing forests. For the same period (1990–2010), the study region in southern-central Queensland was estimated to have net emissions from land-use change in the range of 0.45–0.25 t CO2-e ha–1 year–1. The difference between regions reflects continuation of higher rates of deforestation in Queensland until strict regulation in 2006 whereas native vegetation protection laws were introduced earlier in New South Wales. On the basis of liveweight produced at the farm-gate, emissions from direct land-use change for 1990–2010 were comparable in magnitude to those from other on-farm sources, which were dominated by enteric methane. However, calculation of land-use change impacts for the Queensland region for a period starting 2006, gave a range from net emissions of 0.11 t CO2-e ha–1 year–1 to net removals of 0.07 t CO2-e ha–1 year–1. This study demonstrated a method for deriving spatially- and temporally consistent datasets to improve estimates for direct land-use change impacts in life cycle assessment. It identified areas of uncertainty, including rates of sequestration in woody regrowth and impacts of land-use change on soil carbon stocks in grazed woodlands, but also showed the potential for direct land-use change to represent a net sink for GHG.


GCB Bioenergy ◽  
2016 ◽  
Vol 9 (4) ◽  
pp. 725-742 ◽  
Author(s):  
Sarah J. Gerssen-Gondelach ◽  
Birka Wicke ◽  
Andre P. C. Faaij

2017 ◽  
Vol 240 ◽  
pp. 135-147 ◽  
Author(s):  
Sarah J. Gerssen-Gondelach ◽  
Rachel B.G. Lauwerijssen ◽  
Petr Havlík ◽  
Mario Herrero ◽  
Hugo Valin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document