Transcriptional regulation of the mannitol phosphotransferase system operon by the ferric uptake regulator (Fur) in Vibrio cholerae El Tor Serogroup O1

2021 ◽  
pp. 103848
Author(s):  
He Gao ◽  
Han Wang ◽  
Qin Qin ◽  
Yue Gao ◽  
Yue Qiu ◽  
...  
2020 ◽  
Vol 56 (9) ◽  
pp. 1055-1069
Author(s):  
N. I. Smirnova ◽  
A. A. Kritsky ◽  
J. V. Alkhova ◽  
E. Yu. Agafonova ◽  
E. Yu. Shchelkanova ◽  
...  

The Lancet ◽  
1979 ◽  
Vol 314 (8134) ◽  
pp. 147-148 ◽  
Author(s):  
K.J. Towner ◽  
N.J. Pearson ◽  
F. O'Grady
Keyword(s):  

2015 ◽  
Vol 205 (2) ◽  
pp. 195-200 ◽  
Author(s):  
Debdutta Bhattacharya ◽  
Shuchismita Dey ◽  
Gururaja Perumal Pazhani ◽  
Thandavarayan Ramamurthy ◽  
Mahantesh V. Parande ◽  
...  

2006 ◽  
Vol 55 (11) ◽  
pp. 1559-1562 ◽  
Author(s):  
G. Balakrish Nair ◽  
Ashrafus Safa ◽  
N. A. Bhuiyan ◽  
Suraia Nusrin ◽  
Denise Murphy ◽  
...  

2012 ◽  
Vol 17 (5) ◽  
pp. 31-35
Author(s):  
V. N. Savelyev ◽  
I. V. Savelyeva ◽  
B. V. Babenyshev ◽  
A. N. Kulichenko

In a comparative perspective studied cholera outbreak in the Caucasus due to typical toxigenic and genetically modified (hybrid) El Tor variant strains have been studied. Revealed features of the genetic structure of the genome, factors and ways of transmission of the causative agent of modern cholera El tor should be considered when improving the program of epidemiological supervision in terms of enhancing antiepidemic and prevention measures in cholera, the causative factor of which are of hybrid variants of Vibrio cholerae El tor.


2003 ◽  
Vol 71 (2) ◽  
pp. 1020-1025 ◽  
Author(s):  
Shah M. Faruque ◽  
M. Kamruzzaman ◽  
Ismail M. Meraj ◽  
Nityananda Chowdhury ◽  
G. Balakrish Nair ◽  
...  

ABSTRACT The major virulence factors of toxigenic Vibrio cholerae are cholera toxin (CT), which is encoded by a lysogenic bacteriophage (CTXΦ), and toxin-coregulated pilus (TCP), an essential colonization factor which is also the receptor for CTXΦ. The genes for the biosynthesis of TCP are part of a larger genetic element known as the TCP pathogenicity island. To assess their pathogenic potential, we analyzed environmental strains of V. cholerae carrying genetic variants of the TCP pathogenicity island for colonization of infant mice, susceptibility to CTXΦ, and diarrheagenicity in adult rabbits. Analysis of 14 environmental strains, including 3 strains carrying a new allele of the tcpA gene, 9 strains carrying a new allele of the toxT gene, and 2 strains carrying conventional tcpA and toxT genes, showed that all strains colonized infant mice with various efficiencies in competition with a control El Tor biotype strain of V. cholerae O1. Five of the 14 strains were susceptible to CTXΦ, and these transductants produced CT and caused diarrhea in adult rabbits. These results suggested that the new alleles of the tcpA and toxT genes found in environmental strains of V. cholerae encode biologically active gene products. Detection of functional homologs of the TCP island genes in environmental strains may have implications for understanding the origin and evolution of virulence genes of V. cholerae.


1998 ◽  
Vol 14 (3) ◽  
pp. 465-471 ◽  
Author(s):  
Waldêny Colaço ◽  
Sandoval Vieira da Silva Filho ◽  
Dália dos Prazeres Rodrigues ◽  
Ernesto Hofer

No período de 1992 a 1994, foram analisadas 2.585 amostras de águas de diferentes ecossistemas, acrescidas de 91 espécimens de alimentos visando ao monitoramento de Vibrio cholerae O1 no Estado de Pernambuco. Nas 2.676 amostras foram detectadas 193 cepas de Vibrio cholerae O1 (7,21%) com predominância do sorovar Inaba (183-94,8%) sobre Ogawa (10-5,1%), todas classificadas no biotipo El Tor e sensíveis à tetraciclina. Numa parcela de setenta amostras selecionadas ao acaso, mas incluindo todas do sorovar Ogawa, foi evidenciada a produção de toxina colérica. A maior incidência do vibrião colérico em águas de rios, canais e de esgoto, representando 86% dos isolados, indicou a contaminação fecal por excretores como a causa preponderante na disseminação da bactéria nos sistemas aquáticos. Assinala-se a discreta ocorrrência de V. cholerae O1 nos alimentos processados (2,1%).


2003 ◽  
Vol 71 (6) ◽  
pp. 2993-2999 ◽  
Author(s):  
Shah M. Faruque ◽  
Jun Zhu ◽  
Asadulghani ◽  
M. Kamruzzaman ◽  
John J. Mekalanos

ABSTRACT The major virulence factors of toxigenic Vibrio cholerae are cholera toxin, which is encoded by a lysogenic filamentous bacteriophage (CTXΦ), and toxin-coregulated pilus (TCP), an essential colonization factor that is also the receptor for CTXΦ. The genes involved in the biosynthesis of TCP reside in a pathogenicity island, which has been reported to correspond to the genome of another filamentous phage (designated VPIΦ) and to encode functions necessary for the production of infectious VPIΦ particles. We examined 46 V. cholerae strains having diverse origins and carrying different genetic variants of the TCP island for the production of the VPIΦ and CTXΦ in different culture conditions, including induction of prophages with mitomycin C and UV irradiation. Although 9 of 10 V. cholerae O139 strains and 12 of 15 toxigenic El Tor strains tested produced extracellular CTXΦ, none of the 46 TCP-positive strains produced detectable VPIΦ in repeated assays, which detected as few as 10 particles of a control CTX phage per ml. These results contradict the previous report regarding VPIΦ-mediated horizontal transfer of the TCP genes and suggest that the TCP island is unable to support the production of phage particles. Further studies are necessary to understand the mechanism of horizontal transfer of the TCP island.


Author(s):  
I. V. Savelieva ◽  
A. N. Kulichenko ◽  
V. N. Saveliev ◽  
D. A. Kovalev ◽  
O. V. Vasilieva ◽  
...  

Aim. Conduct in a comparative aspect MLVA-typing of genetically altered cholera vibrio biovar El Tor, isolated from patients during the epidemic (1994) and outbreaks (1993, 1998) in Dagestan with isolates in Mariupol (Ukraine) in 1994-2011 in Moscow (2010, 2012), India (1964, 2006, 2007), Bangladesh 1991, 1994, 2001, 2004) and to establish Phylogenetic connections between strains of cholera vibrios isolated in different years in these territories, to ascertain the source of their drift. Materials and methods. MLVA-tyP-ing was carried out in PCR at 5 variable loci of 35 clinical strains of genetically modified Vibrio cholerae byotyPe El Tor. The obtained amPlicon was studied in the system of automatic caPillary electroPhoresis ExPerion («Bio Rad Laboratories», USA). For Phylogenetic analysis, along with MLVA-genotyPes, 35 strains of Vibrio cholerae from the Institute's collection used Published genotyPes of strains isolated in India, Bangladesh, Haiti. Results. The investigated strains of cholera vibrio are referred to 21 MLVA-tyPes, divided into 2 main clades and 1 seParate branch with clonal clusters and subclusters, each of which contains closely related strains of cholera vibrio genovariants having a different degree of Phylogenetic relationshiP - full or Partial identity of allelic Profiles of five variable loci. The sources of drift of genetically modified Vibrio cholerae byotyPe El Tor to Russia and Ukraine from disadvantaged cholera of India, Bangladesh, Azerbaijan and the countries of the Middle East have been established. Conclusion. The obtained data testify to the PolymorPhism of MLVA-tyPes of genetically altered strains of cholera vibrio of the biologist El Tor, evolved in different years and caused ePidemics or outbreaks of cholera in different territories during different time Periods of the course of the seventh cholera Pandemic, and also suggest the Polyclonal origin of the Vibrio cholerae biovar El Tor and the source of their drift to the territory of the Russian Federation and Ukraine.


Sign in / Sign up

Export Citation Format

Share Document