Parameter inference for non-repairable multi-state system reliability models by multi-level observation sequences

2017 ◽  
Vol 166 ◽  
pp. 3-15 ◽  
Author(s):  
Tao Jiang ◽  
Yu Liu
2013 ◽  
Vol 347-350 ◽  
pp. 2590-2595 ◽  
Author(s):  
Sheng Zhai ◽  
Shu Zhong Lin

Aiming at the limitations of traditional reliability analysis theory in multi-state system, a method for reliability modeling and assessment of a multi-state system based on Bayesian Network (BN) is proposed with the advantages of uncertain reasoning and describing multi-state of event. Through the case of cell production line system, in this paper we will discuss how to establish and construct a multi-state system model based on Bayesian network, and how to apply the prior probability and posterior probability to do the bidirectional inference analysis, and directly calculate the reliability indices of the system by means of prior probability and Conditional Probability Table (CPT) . Thereby we can do the qualitative and quantitative analysis of the multi-state system reliability, identify the weak links of the system, and achieve assessment of system reliability.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammad Reza Pourhassan ◽  
Sadigh Raissi ◽  
Arash Apornak

PurposeIn some environments, the failure rate of a system depends not only on time but also on the system condition, such as vibrational level, efficiency and the number of random shocks, each of which causes failure. In this situation, systems can keep working, though they fail gradually. So, the purpose of this paper is modeling multi-state system reliability analysis in capacitor bank under fatal and nonfatal shocks by a simulation approach.Design/methodology/approachIn some situations, there may be several levels of failure where the system performance diminishes gradually. However, if the level of failure is beyond a certain threshold, the system may stop working. Transition from one faulty stage to the next can lead the system to more rapid degradation. Thus, in failure analysis, the authors need to consider the transition rate from these stages in order to model the failure process.FindingsThis study aims to perform multi-state system reliability analysis in energy storage facilities of SAIPA Corporation. This is performed to extract a predictive model for failure behavior as well as to analyze the effect of shocks on deterioration. The results indicate that the reliability of the system improved by 6%.Originality/valueThe results of this study can provide more confidence for critical system designers who are engaged on the proper system performance beyond economic design.


Author(s):  
Anusha Krishna Murthy ◽  
Saikath Bhattacharya ◽  
Lance Fiondella

Most reliability models assume that components and systems experience one failure mode. Several systems such as hardware, however, are prone to more than one mode of failure. Past two-failure mode research derives equations to maximize reliability or minimize cost by identifying the optimal number of components. However, many if not all of these equations are derived from models that make the simplifying assumption that components fail in a statistically independent manner. In this paper, models to assess the impact of correlation on two-failure mode system reliability and cost are developed and corresponding expressions for reliability and cost optimal designs derived. Our illustrations demonstrate that, despite correlation, the approach identifies reliability and cost optimal designs.


Author(s):  
SHAMBHU J. UPADHYAYA ◽  
I-SHYAN HWANG

This paper presents a novel technique for the enhancement of operational reliability of processor arrays by a multi-level fault-tolerant design approach. The key idea of the design is based on the well known hierarchical design paradigm. The proposed fault-tolerant architecture uses a flexible reconfiguration of redundant nodes, thereby offering a better spare utilization than existing two-level redundancy schemes. A variable number of spares is provided at each level of redundancy which enables a flexible reconfiguration as well as area efficient layouts and better spare utilization. The spare nodes at each level can replace any of the failed primary nodes, not only at the same level but also those at the lower levels. The architecture can be adopted to increase the system reliability in Multi Chip Modules (MCMs). The main contributions of our work are the higher degree of fault tolerance, higher overall reliability, flexibility, and a better spare utilization.


Sign in / Sign up

Export Citation Format

Share Document