scholarly journals Hardness and thermal conductivity of Cu-carbon composites by using different carbon-based fillers

2022 ◽  
Vol 33 ◽  
pp. 105157
Author(s):  
Chuan Li ◽  
Abdul Malik ◽  
Faisal Nazeer ◽  
Sehreish Abrar ◽  
Jianyu Long ◽  
...  
Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


Carbon ◽  
2021 ◽  
Vol 174 ◽  
pp. 758-759
Author(s):  
Bao-liu Li ◽  
Jian-guang Guo ◽  
Bing Xu ◽  
Hui-tao Xu ◽  
Zhi-jun Dong ◽  
...  

2015 ◽  
Vol 19 (4) ◽  
pp. 1369-1372 ◽  
Author(s):  
Zhe Zhao ◽  
Hai-Ming Huang ◽  
Qing Wang ◽  
Song Ji

To explore whether pressure and temperature can affect thermal contact resistance, we have proposed a new experimental approach for measurement of the thermal contact resistance. Taking the thermal contact resistance between phenolic resin and carbon-carbon composites, cuprum, and aluminum as the examples, the influence of the thermal contact resistance between specimens under pressure is tested by experiment. Two groups of experiments are performed and then an analysis on influencing factors of the thermal contact resistance is presented in this paper. The experimental results reveal that the thermal contact resistance depends not only on the thermal conductivity coefficient of materials, but on the interfacial temperature and pressure. Furthermore, the thermal contact resistance between cuprum and aluminum is more sensitive to pressure and temperature than that between phenolic resin and carbon-carbon composites.


2019 ◽  
Vol 226 ◽  
pp. 111221 ◽  
Author(s):  
Mohammad Zahid ◽  
Rajneesh Sharma ◽  
Atul Ramesh Bhagat ◽  
Syed Abbas ◽  
Ajay Kumar ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1168 ◽  
Author(s):  
David Cabaleiro ◽  
Samah Hamze ◽  
Jacek Fal ◽  
Marco A. Marcos ◽  
Patrice Estellé ◽  
...  

This paper presents the preparation and thermal/physical characterization of phase change materials (PCMs) based on poly(ethylene glycol) 400 g·mol−1 and nano-enhanced by either carbon black (CB), a raw graphite/diamond nanomixture (G/D-r), a purified graphite/diamond nanomixture (G/D-p) or nano-Diamond nanopowders with purity grades of 87% or 97% (nD87 and nD97, respectively). Differential scanning calorimetry and oscillatory rheology experiments were used to provide an insight into the thermal and mechanical changes taking place during solid-liquid phase transitions of the carbon-based suspensions. PEG400-based samples loaded with 1.0 wt.% of raw graphite/diamond nanomixture (G/D-r) exhibited the lowest sub-cooling effect (with a reduction of ~2 K regarding neat PEG400). The influences that the type of carbon-based nanoadditive and nanoparticle loading (0.50 and 1.0 wt.%) have on dynamic viscosity, thermal conductivity, density and surface tension were also investigated in the temperature range from 288 to 318 K. Non-linear rheological experiments showed that all dispersions exhibited a non-Newtonian pseudo-plastic behavior, which was more noticeable in the case of carbon black nanofluids at low shear rates. The highest enhancements in thermal conductivity were observed for graphite/diamond nanomixtures (3.3–3.6%), while nano-diamond suspensions showed the largest modifications in density (0.64–0.66%). Reductions in surface tension were measured for the two nano-diamond nanopowders (nD87 and nD97), while slight increases (within experimental uncertainties) were observed for dispersions prepared using the other three carbon-based nanopowders. Finally, a good agreement was observed between the experimental surface tension measurements performed using a Du Noüy ring tensiometer and a drop-shape analyzer.


2014 ◽  
Vol 7 (1) ◽  
pp. 242586 ◽  
Author(s):  
Zhi-Hai Feng ◽  
Jia-Yun Zhi ◽  
Zhen Fan ◽  
Duo Sun ◽  
Chao Si ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document