scholarly journals A neural network-based method for satellite-based mapping of sediment-laden sea ice in the Arctic

2022 ◽  
Vol 270 ◽  
pp. 112861
Author(s):  
Hisatomo Waga ◽  
Hajo Eicken ◽  
Bonnie Light ◽  
Yasushi Fukamachi
Keyword(s):  
Sea Ice ◽  
2019 ◽  
Vol 11 (23) ◽  
pp. 2864 ◽  
Author(s):  
Jiping Liu ◽  
Yuanyuan Zhang ◽  
Xiao Cheng ◽  
Yongyun Hu

The accurate knowledge of spatial and temporal variations of snow depth over sea ice in the Arctic basin is important for understanding the Arctic energy budget and retrieving sea ice thickness from satellite altimetry. In this study, we develop and validate a new method for retrieving snow depth over Arctic sea ice from brightness temperatures at different frequencies measured by passive microwave radiometers. We construct an ensemble-based deep neural network and use snow depth measured by sea ice mass balance buoys to train the network. First, the accuracy of the retrieved snow depth is validated with observations. The results show the derived snow depth is in good agreement with the observations, in terms of correlation, bias, root mean square error, and probability distribution. Our ensemble-based deep neural network can be used to extend the snow depth retrieval from first-year sea ice (FYI) to multi-year sea ice (MYI), as well as during the melting period. Second, the consistency and discrepancy of snow depth in the Arctic basin between our retrieval using the ensemble-based deep neural network and two other available retrievals using the empirical regression are examined. The results suggest that our snow depth retrieval outperforms these data sets.


2021 ◽  
Vol 9 (7) ◽  
pp. 755
Author(s):  
Kangkang Jin ◽  
Jian Xu ◽  
Zichen Wang ◽  
Can Lu ◽  
Long Fan ◽  
...  

Warm current has a strong impact on the melting of sea ice, so clarifying the current features plays a very important role in the Arctic sea ice coverage forecasting study field. Currently, Arctic acoustic tomography is the only feasible method for the large-range current measurement under the Arctic sea ice. Furthermore, affected by the high latitudes Coriolis force, small-scale variability greatly affects the accuracy of Arctic acoustic tomography. However, small-scale variability could not be measured by empirical parameters and resolved by Regularized Least Squares (RLS) in the inverse problem of Arctic acoustic tomography. In this paper, the convolutional neural network (CNN) is proposed to enhance the prediction accuracy in the Arctic, and especially, Gaussian noise is added to reflect the disturbance of the Arctic environment. First, we use the finite element method to build the background ocean model. Then, the deep learning CNN method constructs the non-linear mapping relationship between the acoustic data and the corresponding flow velocity. Finally, the simulation result shows that the deep learning convolutional neural network method being applied to Arctic acoustic tomography could achieve 45.87% accurate improvement than the common RLS method in the current inversion.


Author(s):  
Qi Liu 1 ◽  
Yawen Zhang 1

During summer, melt ponds have a significant influence on Arctic sea-ice albedo. The melt pond fraction (MPF) also has the ability to forecast the Arctic sea-ice in a certain period. It is important to retrieve accurate melt pond fraction (MPF) from satellite data for Arctic research. This paper proposes a satellite MPF retrieval model based on the multi-layer neural network, named MPF-NN. Our model uses multi-spectral satellite data as model input and MPF information from multi-site and multi-period visible imagery as prior knowledge for modeling. It can effectively model melt ponds evolution of different regions and periods over the Arctic. Evaluation results show that the MPF retrieved from MODIS data using the proposed model has an RMSE of 3.91% and a correlation coefficient of 0.73. The seasonal distribution of MPF is also consistent with previous results.


2019 ◽  
Author(s):  
Anne Braakmann-Folgmann ◽  
Craig Donlon

Abstract. Snow lying on top of sea ice plays an important role in the radiation budget because of its high albedo, the Arctic freshwater budget, and influences the Arctic climate: it is fundamental climate variable. Importantly, accurate snow depth products are required to convert satellite altimeter measurements of ice freeboard to sea ice thickness (SIT). Due to the harsh environment and challenging accessibility, in situ measurements of snow depth are sparse. The quasi-synoptic frequent repeat coverage provided by satellite measurements offers the best approach to regularly monitor snow depth on sea ice. A number of algorithms are based on satellite microwave radiometry measurements and simple empirical relationships. Reducing their uncertainty remains a major challenge. A High Priority Candidate Mission called the Copernicus Imaging Microwave Radiometer (CIMR) is now being studied at the European Space Agency. CIMR proposes a conically scanning radiometer having a swath > 1900 km and including channels at 1.4, 6.9, 10.65, 18.7 and 36.5 GHz on the same platform. It will fly in a high inclination dawn-dusk orbit coordinated with the MetOp-SG(B). As part of the preparation for the CIMR mission, we explore a new approach to retrieve snow depth on sea ice from multi-frequency satellite microwave radiometer measurements using a neural network approach. Neural networks have proven to reach high accuracies in other domains and excel in handling complex, non-linear relationships. We propose one neural network that only relies on AMSR2 channel brightness temperature data input and another one using both AMSR2 and SMOS data as input. We evaluate our results from the neural network approach using airborne snow depth measurements from Operation IceBridge (OIB) campaigns and compare them to products from three other established snow depth algorithms. We show that both our neural networks outperform the other algorithms in terms of accuracy, when compared to the OIB data and we demonstrate that plausible results are obtained even outside the algorithm training period and area. We then convert CryoSat freeboard measurements to SIT using different snow products including the snow depth from our networks. We confirm that a more accurate snow depth product derived using our neural networks leads to more accurate estimates of SIT, when compared to the SIT measured by a laser altimeter at the OIB campaign. Our network with additional SMOS input yields even higher accuracies, but has the disadvantage of a larger “hole at the pole”. Our neural network approaches are applicable over the whole Arctic, capturing first-year ice and multi-year ice conditions throughout winter. Once the networks are designed and trained, they are fast and easy to use. The combined AMSR2 + SMOS neural network is particularly important as a pre-cursor demonstration for the Copernicus CIMR candidate mission highlighting the benefit of CIMR.


Author(s):  
Xiao-ming Li ◽  
Tingting Qin ◽  
Ke Wu

In this paper, we presented a method of retrieving sea surface wind speed from Sentinel-1 synthetic aperture radar (SAR) horizontal-horizontal (HH) polarization data in extra-wide mode, which have been extensively acquired over the Arctic for sea ice monitoring. In contrast to the conventional algorithm, i.e., using a geophysical model function (GMF) to retrieve sea surface wind by spaceborne SAR, we introduced an alternative method based on physical model guided neural network. Parameters of SAR normalized radar cross section, incidence angle, and wind direction are used as the inputs of the backward propagation (BP) neural network, and the output is the sea surface wind speed. The network is developed based on more than 11,000 HH-polarized EW images acquired in the marginal ice zone (MIZ) of the Arctic and their collocations with scatterometer measurements. Verification of the neural network based on the testing dataset yields a bias of 0.23 m/s and a root mean square error (RMSE) of 1.25 m/s compared to the scatterometer wind speed. Further comparison of the SAR retrieved sea surface wind speed with independent buoy measurements shows a bias and RMSE of 0.12 m/s and 1.42 m/s, respectively. We also analyzed the uncertainty of retrieval when the wind direction data of a reanalysis model are used as inputs to the neural network. By combining the detected sea ice cover information based on the EW data, one can expect to derive simultaneously sea ice and marine-meteorological parameters by spaceborne SAR in a high spatial resolution in the Arctic.


2019 ◽  
Vol 13 (9) ◽  
pp. 2421-2438 ◽  
Author(s):  
Anne Braakmann-Folgmann ◽  
Craig Donlon

Abstract. Snow lying on top of sea ice plays an important role in the radiation budget because of its high albedo and the Arctic freshwater budget, and it influences the Arctic climate: it is a fundamental climate variable. Importantly, accurate snow depth products are required to convert satellite altimeter measurements of ice freeboard to sea ice thickness (SIT). Due to the harsh environment and challenging accessibility, in situ measurements of snow depth are sparse. The quasi-synoptic frequent repeat coverage provided by satellite measurements offers the best approach to regularly monitor snow depth on sea ice. A number of algorithms are based on satellite microwave radiometry measurements and simple empirical relationships. Reducing their uncertainty remains a major challenge. A High Priority Candidate Mission called the Copernicus Imaging Microwave Radiometer (CIMR) is now being studied at the European Space Agency. CIMR proposes a conically scanning radiometer having a swath >1900 km and including channels at 1.4, 6.9, 10.65, 18.7 and 36.5 GHz on the same platform. It will fly in a high-inclination dawn–dusk orbit coordinated with the MetOp-SG(B). As part of the preparation for the CIMR mission, we explore a new approach to retrieve snow depth on sea ice from multi-frequency satellite microwave radiometer measurements using a neural network approach. Neural networks have proven to reach high accuracies in other domains and excel in handling complex, non-linear relationships. We propose one neural network that only relies on AMSR2 channel brightness temperature data input and another one using both AMSR2 and SMOS data as input. We evaluate our results from the neural network approach using airborne snow depth measurements from Operation IceBridge (OIB) campaigns and compare them to products from three other established snow depth algorithms. We show that both our neural networks outperform the other algorithms in terms of accuracy, when compared to the OIB data and we demonstrate that plausible results are obtained even outside the algorithm training period and area. We then convert CryoSat freeboard measurements to SIT using different snow products including the snow depth from our networks. We confirm that a more accurate snow depth product derived using our neural networks leads to more accurate estimates of SIT, when compared to the SIT measured by a laser altimeter at the OIB campaign. Our network with additional SMOS input yields even higher accuracies, but has the disadvantage of a larger “hole at the pole”. Our neural network approaches are applicable over the whole Arctic, capturing first-year ice and multi-year ice conditions throughout winter. Once the networks are designed and trained, they are fast and easy to use. The combined AMSR2 + SMOS neural network is particularly important as a precursor demonstration for the Copernicus CIMR candidate mission highlighting the benefit of CIMR.


2020 ◽  
Vol 12 (15) ◽  
pp. 2486
Author(s):  
Ryan Kruk ◽  
M. Christopher Fuller ◽  
Alexander S. Komarov ◽  
Dustin Isleifson ◽  
Ian Jeffrey

Accurate maps of ice concentration and ice type are needed to address increased interest in commercial marine transportation through the Arctic. RADARSAT-2 SAR imagery is the primary source of data used by expert ice analysts at the Canadian Ice Service (CIS) to produce sea ice maps over the Canadian territory. This study serves as a proof of concept that neural networks can be used to accurately predict ice type from SAR data. Datasets of SAR images served as inputs, and CIS ice charts served as labelled outputs to train a neural network to classify sea ice type. Our results show that DenseNet achieves the highest overall classification accuracy of 94.0% including water and the highest ice classification accuracy of 91.8% on a three class dataset using a fusion of HH and HV SAR polarizations for the input samples. The 91.8% ice classification accuracy validates the premise that a neural network can be used to effectively categorize different ice types based on SAR data.


2020 ◽  
Vol 12 (17) ◽  
pp. 2746
Author(s):  
Yifan Ding ◽  
Xiao Cheng ◽  
Jiping Liu ◽  
Fengming Hui ◽  
Zhenzhan Wang ◽  
...  

The accurate knowledge of variations of melt ponds is important for understanding the Arctic energy budget due to its albedo–transmittance–melt feedback. In this study, we develop and validate a new method for retrieving melt pond fraction (MPF) over Arctic sea ice using all seven spectral bands of MODIS surface reflectance. We construct a robust ensemble-based deep neural network and use in-situ MPF observations collected from multiple sources as the target data to train the network. We examine the potential influence of using sea ice concentration (SIC) from different sources as additional target data (besides MPF) on the MPF retrieval. The results suggest that the inclusion of SIC has a minor impact on MPF retrieval. Based on this, we create a new MPF data from 2000 to 2019 (the longest data in our knowledge). The validation shows that our new MPF data is in good agreement with the observations. We further compare the new MPF dataset with the previously published MPF datasets. It is found that the evolution of the new MPF is similar to previous MPF data throughout the melting season, but the new MPF data is in relatively better agreement with the observations in terms of correlations and root mean squared errors (RMSE), and also has the smallest value in the first half of the melting season.


2021 ◽  
Vol 13 (22) ◽  
pp. 4571
Author(s):  
Jay P. Hoffman ◽  
Steven A. Ackerman ◽  
Yinghui Liu ◽  
Jeffrey R. Key ◽  
Iain L. McConnell

Despite accounting for a small fraction of the surface area in the Arctic, long and narrow sea ice fractures, known as “leads”, play a critical role in the energy flux between the ocean and atmosphere. As the volume of sea ice in the Arctic has declined over the past few decades, it is increasingly important to monitor the corresponding changes in sea ice leads. A novel approach has been developed using artificial intelligence (AI) to detect sea ice leads using satellite thermal infrared window data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS). In this new approach, a particular type of convolutional neural network, a U-Net, replaces a series of conventional image processing tests from our legacy algorithm. Results show the new approach has a high detection accuracy with F1 Scores on the order of 0.7. Compared to the legacy algorithm, the new algorithm shows improvement, with more true positives, fewer false positives, fewer false negatives, and better agreement between satellite instruments.


Sign in / Sign up

Export Citation Format

Share Document