Review of model experimental methods focusing on aerodynamic simulation of floating offshore wind turbines

2022 ◽  
Vol 157 ◽  
pp. 112036
Author(s):  
Chaohe Chen ◽  
Yuan Ma ◽  
Tianhui Fan
2014 ◽  
Vol 134 (8) ◽  
pp. 1096-1103 ◽  
Author(s):  
Sho Tsujimoto ◽  
Ségolène Dessort ◽  
Naoyuki Hara ◽  
Keiji Konishi

2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Jiawen Li ◽  
Jingyu Bian ◽  
Yuxiang Ma ◽  
Yichen Jiang

A typhoon is a restrictive factor in the development of floating wind power in China. However, the influences of multistage typhoon wind and waves on offshore wind turbines have not yet been studied. Based on Typhoon Mangkhut, in this study, the characteristics of the motion response and structural loads of an offshore wind turbine are investigated during the travel process. For this purpose, a framework is established and verified for investigating the typhoon-induced effects of offshore wind turbines, including a multistage typhoon wave field and a coupled dynamic model of offshore wind turbines. On this basis, the motion response and structural loads of different stages are calculated and analyzed systematically. The results show that the maximum response does not exactly correspond to the maximum wave or wind stage. Considering only the maximum wave height or wind speed may underestimate the motion response during the traveling process of the typhoon, which has problems in guiding the anti-typhoon design of offshore wind turbines. In addition, the coupling motion between the floating foundation and turbine should be considered in the safety evaluation of the floating offshore wind turbine under typhoon conditions.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 475
Author(s):  
Payam Aboutalebi ◽  
Fares M’zoughi ◽  
Izaskun Garrido ◽  
Aitor J. Garrido

Undesired motions in Floating Offshore Wind Turbines (FOWT) lead to reduction of system efficiency, the system’s lifespan, wind and wave energy mitigation and increment of stress on the system and maintenance costs. In this article, a new barge platform structure for a FOWT has been proposed with the objective of reducing these undesired platform motions. The newly proposed barge structure aims to reduce the tower displacements and platform’s oscillations, particularly in rotational movements. This is achieved by installing Oscillating Water Columns (OWC) within the barge to oppose the oscillatory motion of the waves. Response Amplitude Operator (RAO) is used to predict the motions of the system exposed to different wave frequencies. From the RAOs analysis, the system’s performance has been evaluated for representative regular wave periods. Simulations using numerical tools show the positive impact of the added OWCs on the system’s stability. The results prove that the proposed platform presents better performance by decreasing the oscillations for the given range of wave frequencies, compared to the traditional barge platform.


2021 ◽  
Author(s):  
Athul K. Sundarrajan ◽  
Yong Hoon Lee ◽  
James T. Allison ◽  
Daniel R. Herber

Abstract This paper discusses a framework to design elements of the plant and control systems for floating offshore wind turbines (FOWTs) in an integrated manner using linear parameter-varying models. Multiple linearized models derived from high-fidelity software are used to model the system in different operating regions characterized by the incoming wind speed. The combined model is then used to generate open-loop optimal control trajectories as part of a nested control co-design strategy that explores the system’s stability and power production in the context of crucial plant and control design decisions. A cost model is developed for the FOWT system, and the effect of plant decisions and subsequent power and stability response of the FOWT is quantified in terms of the levelized cost of energy (LCOE) for that system. The results show that the stability constraints and the plant design decisions affect the turbine’s power and, subsequently, LCOE of the system. The results indicate that a lighter plant in terms of mass can produce the same power for a lower LCOE while still satisfying the constraints.


2021 ◽  
Author(s):  
Peng Chen ◽  
Changhong Hu ◽  
Zhiqiang Hu

Abstract Artificial intelligence (AI) brings a new solution to overcome the challenges of Floating offshore wind turbines (FOWTs) to better predict the dynamic responses with intelligent strategies. A new AI-based software-in-the-loop method, named SADA is introduced in this paper for the prediction of dynamic responses of FOWTs, which is proposed based on an in-house programme DARwind. DARwind is a coupled aero-hydro-servo-elastic in-house program for FOWTs, and a reinforcement learning method with exhaust algorithm and deep deterministic policy gradient (DDPG) are embedded in DARwind as an AI module. Firstly, the methodology is introduced with the selection of Key Disciplinary Parameters (KDPs). Secondly, Brute-force Method and DDPG algorithms are adopted to changes the KDPs’ values according to the feedback of 6DOF motions of Hywind Spar-type platform through comparing the DARwind simulation results and those of basin experimental data. Therefore, many other dynamic responses that cannot be measured in basin experiment can be predicted in good accuracy with SADA method. Finally, the case study of SADA method was conducted and the results demonstrated that the mean values of the platform’s motions can be predicted with higher accuracy. This proposed SADA method takes advantage of numerical-experimental method, basin experimental data and the machine learning technology, which brings a new and promising solution for overcoming the handicap impeding direct use of conventional basin experimental way to analyze FOWT’s dynamic responses during the design phase.


2019 ◽  
Vol 133 ◽  
pp. 1455-1467 ◽  
Author(s):  
Jichuan Kang ◽  
Liping Sun ◽  
C. Guedes Soares

Author(s):  
Ricardo Faerron Guzmán ◽  
Kolja Müller ◽  
Luca Vita ◽  
Po Wen Cheng

Aligned with work performed in deliverable D7.7 of the H2020 project LIFES50+, this study supports the definition of the numerical setup in the design of floating offshore wind turbines. The results of extensive simulation studies are presented, which focus particularly on determining the requirements for the load simulations in the design process. The analysis focusses on the cases of: (1) fatigue during power production and (2) ultimate loads during power production and severe sea state. For the fatigue load case, sensitivity study is performed in order to determine relevant load conditions and the expected impact of a variation in the environmental loading. Additionally, focus is put on the requirements regarding the run-in time, number of seeds and the simulation length for both fatigue and ultimate limit state (FLS, ULS) analysis. Another topic addressed is the benefit of using an increased number of seeds rather than extending the simulation time of single seeds, when a given total simulation time is required as described in the guidelines. The run-in time may be shortened when using predetermined steady states as initial conditions. Requirements for the steady state simulations are also determined and presented.


Sign in / Sign up

Export Citation Format

Share Document