Phytochemical and biological attributes of Narcissus pseudonarcissus L. (Amaryllidaceae): A review

2022 ◽  
Vol 146 ◽  
pp. 437-458
Youstina Refaat Boshra ◽  
John Refaat Fahim ◽  
Ashraf Nageeb Elsayed Hamed ◽  
Samar Yehia Desoukey
2019 ◽  
Vol 16 (5) ◽  
pp. 709-729 ◽  
Muhammad A. Rashid ◽  
Aisha Ashraf ◽  
Sahibzada S. Rehman ◽  
Shaukat A. Shahid ◽  
Adeel Mahmood ◽  

Background:1,4-Diazepines are two nitrogen containing seven membered heterocyclic compounds and associated with a wide range of biological activities. Due to its medicinal importance, scientists are actively involved in the synthesis, reactions and biological evaluation of 1,4-diazepines since number of decades.Objective:The primary purpose of this review is to discuss the synthetic schemes and reactivity of 1,4- diazepines. This article also describes biological aspects of 1,4-diazepine derivatives, that can be usefully exploited for the pharmaceutical sector.Conclusion:This review summarizes the abundant literature on synthetic routes, chemical reactions and biological attributes of 1,4-diazepine derivatives. We concluded that 1,4-diazepines have significant importance due to their biological activities like antipsychotic, anxiolytic, anthelmintic, anticonvulsant, antibacterial, antifungal and anticancer. 1,4-diazepine derivatives with significant biological activities could be explored for potential use in the pharmaceutical industries.

Planta ◽  
1985 ◽  
Vol 164 (4) ◽  
pp. 459-472 ◽  
P. Hansmann ◽  
H. Falk ◽  
K. Ronai ◽  
P. Sitte

1981 ◽  
Vol 20 (4) ◽  
pp. 591-595 ◽  
Alfred F. Renaldo ◽  
David T. Bailey ◽  
Glenn M. Nagel

2021 ◽  
Vol 18 ◽  
Meenu Devi ◽  
Shivangi Jaiswal ◽  
Sonika Jain ◽  
Navjeet Kaur ◽  
Jaya Dwivedi

: Nitrogen-containing heterocycles attract the attention of chemists due to their multifarious activities. Amongst all, pyrimidine plays a central role and exhibits a broad spectrum of biological activities. Literature is replete with the various aspects of synthetic development in pyrimidine chemistry for a wide array of applications. It aroused our interest to compile various novel and efficient synthetic approaches towards the synthesis of pyrimidine and its derivatives. Pyrimidine derivatives are broadly useful as therapeutic agents, owing to their high degree of structural diversity. They have been recorded to possess a diverse range of therapeutic activities, viz. anticancer, anti-inflammatory, anti-HIV etc.

2018 ◽  
Vol 19 (12) ◽  
pp. 4006 ◽  
Xi Li ◽  
Dongqin Tang ◽  
Hui Du ◽  
Yimin Shi

Narcissus pseudonarcissus is an important bulbous plant with white or yellow perianths and light yellow to orange-red coronas, but little is known regarding the biochemical and molecular basis related to flower color polymorphisms. To investigate the mechanism of color formation, RNA-Seq of flower of two widely cultured cultivars (‘Slim Whitman’ and ‘Pinza’) with different flower color was performed. A total of 84,463 unigenes were generated from the perianths and coronas. By parallel metabolomic and transcriptomic analyses, we provide an overview of carotenoid biosynthesis, degradation, and accumulation in N. pseudonarcissus. The results showed that the content of carotenoids in the corona was higher than that in the perianth in both cultivars. Accordingly, phytoene synthase (PSY) transcripts have a higher abundance in the coronas than that in perianths. While the expression levels of carotenoid biosynthetic genes, like GGPPS, PSY, and LCY-e, were not significantly different between two cultivars. In contrast, the carotenoid degradation gene NpCCD4 was highly expressed in white-perianth cultivars, but was hardly detected in yellow-perianth cultivars. Silencing of NpCCD4 resulted in a significant increase in carotenoid accumulation, especially in all-trans-β-carotene. Therefore, we presume that NpCCD4 is a crucial factor that causes the low carotenoid content and color fading phenomenon of ‘Slim Whitman’ by mediating carotenoid turnover. Our findings provide mass RNA-seq data and new insights into carotenoid metabolism in N. pseudonarcissus.

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5444
Judith Sánchez-Blanco ◽  
Ernesto V. Vega-Peña ◽  
Francisco J. Espinosa-García

BackgroundDespite numerous tests of Darwin’s naturalization hypothesis (DNH) evidence for its support or rejection is still contradictory. We tested a DNH derived prediction stating that nonnative species (NNS) without native congeneric relatives (NCR) will spread to a greater number of localities than species with close relatives in the new range. This test controlled the effect of residence time (Rt) on the spread of NNS and used naturalized species beyond their lag phase to avoid the effect of stochastic events in the establishment and the lag phases that could obscure the NCR effects on NNS.MethodsWe compared the number of localities (spread) occupied by NNS with and without NCR using 13,977 herbarium records for 305 NNS of weeds. We regressed the number of localities occupied by NNSversus Rtto determine the effect of time on the spread of NNS. Then, we selected the species withRtgreater than the expected span of the lag phase, whose residuals were above and below the regression confidence limits; these NNS were classified as widespread (those occupying more localities than expected byRt) and limited-spread (those occupying fewer localities than expected). These sets were again subclassified into two groups: NNS with and without NCR at the genus level. The number of NNS with and without NCR was compared usingχ2tests and Spearman correlations between the residuals and the number of relatives. Then, we grouped the NNS using 34 biological attributes and five usages to identify the groups’ possible associations with spread and to test DNH. To identify species groups, we performed a nonmetric multidimensional scaling (NMDS) analysis and evaluated the influences of the number of relatives, localities, herbarium specimens,Rt, and residuals of regression. The Spearman correlation and the Mann–WhitneyUtest were used to determine if the DNH prediction was met. Additionally, we used the clustering objects on subsets of attributes (COSA) method to identify possible syndromes (sets of biological attributes and usages) associated to four groups of NNS useful to test DNH (those with and without NCR and those in more and fewer localities than expected byRt).ResultsResidence time explained 33% of the variation in localities occupied by nonnative trees and shrubs and 46% of the variation for herbs and subshrubs. The residuals of the regression for NNS were not associated with the number or presence of NCR. In each of the NMDS groups, the number of localities occupied by NNS with and without NCR did not significantly differ. The COSA analysis detected that only NNS with NCR in more and fewer localities than expected share biological attributes and usages, but they differ in their relative importance.DiscussionOur results suggest that DNH does not explain the spread of naturalized species in a highly heterogeneous country. Thus, the presence of NCR is not a useful characteristic in risk analyses for naturalized NNS.

Izabelli dos Santos Ribeiro ◽  
Gabriel Paganini Faggioni ◽  
Guilherme Miranda Barbosa ◽  
Evaldo Luís Cardoso ◽  
Sandra Aparecida Santos


Sign in / Sign up

Export Citation Format

Share Document