Near real-time notification of water quality impairments in recreational freshwaters using rapid online detection of β-D-glucuronidase activity as a surrogate for Escherichia coli monitoring

2020 ◽  
Vol 720 ◽  
pp. 137303 ◽  
Author(s):  
Margot Cazals ◽  
Rebecca Stott ◽  
Carole Fleury ◽  
François Proulx ◽  
Michèle Prévost ◽  
...  
Author(s):  
Markus T Lasut ◽  
Adianse Tarigan

A study on water quality status of three riverine systems, S. Bailang (SB), S. Maasing (SM), and S. Tondano (ST), in coastal city of Manado, North Sulawesi Province, has been conducted to measure several water quality parameters, to analyse source and quality of wastewater discharge, and to assess the status of the rivers related to the water quality. Measurement of the parameters was conducted using three indicators, i.e. organic (BOD5) and in-organic (N-NO3 and P-PO4), and pathogenic microorganism (Escherichia coli [EC] and total coliform [TC]). The result showed that the level of water quality varied between the rivers. The average level of water quality (based on the observed parameters) in SB, respectively, was 0.317 mg/l, 0.093 mg/l, 2 mg/l, >2420 MPN, and  >2420 MPN; in SM, respectively, was 0.029 mg/l, 1.859 mg/l, 17.7 mg/l, >2420 MPN, and >2420 MPN; and in ST, respectively, was 0.299 mg/l, 0.252 mg/l, 3.5 mg/l, >2420 MPN, and >2420 MPN. The level of water quality between the rivers was not significantly different (p>0.05), except based on the parameter of N-NO3 which was significantly different (p<0.01). The status of the observed rivers varied based on the classes of their water utilities (according to the Government Regulation of Indonesia, No. 82, 2001); mostly was "unsuitable". Kajian tentang status kualitas air di 3 perairan sungai di kota pesisir Manado, S. Bailang (SB), S. Maasing (SM), dan S. Tondano (ST), Provinsi Sulawesi Utara, telah dilakukan yang bertujuan untuk mengukur beberapa parameter kualitas air, menganalisis sumber dan kualitas buangan limbah domestik, dan menilai status ketiga perairan sungai tersebut. Tiga indikator digunakan, yaitu: bahan organik (BOD5), bahan anorganik (N-NO3 dan P-PO4), dan mikroorganisme patogenik (Escherichia coli [EC] dan coliform total [TC]). Hasil kajian menunjukkan bahwa tingkat kualitas air perairan tersebut berbeda-beda. Konsentrasi rerata parameter kualitas air  (BOD5, N-NO3, P-PO4, EC, dan TC) di SB, berturut-turut, sebesar 0.317 mg/l, 0.093 mg/l, 2 mg/l, >2420 MPN, dan >2420 MPN; di SM, berturut-turut, sebesar 0.029 mg/l, 1.859 mg/l, 17.7 mg/l, >2420 MPN, dan >2420 MPN; dan di ST, berturut-turut, sebesar 0.299 mg/l, 0.252 mg/l, 3.5 mg/l, >2420 MPN, dan >2420 MPN. Konsentrasi kualitas air ketiga sungai tersebut tidak berbeda secara signifikan (p>0.05), kecuali parameter N-NO3 (p<0.01). Secara umum, kondisi kualitas air ketiga sungai tersebut, menurut Peraturan Pemerintah No. 82, 2001) berada dalam status “tidak cocok” untuk peruntukannya.


1992 ◽  
Vol 27 (2) ◽  
pp. 301-310
Author(s):  
Agnes G. Pulvermüller ◽  
Heidulf E. Müller

Abstract The survey of the ecological condition of eight lakes within the city limits of Freiburg included hydrochemical measurements and analyses (oxygen profiles, Secchi depth, pH, biochemical oxygen demand) together with biological parameters (chlorophyll a, phytoplanktonbiomass, Escherichia coli counts), as well as parasitic examinations. Only some of the investigated parameters are presented here. Seven of the eight lakes were found to be eutrophic. The process of eutrophication appears to be still in progress. One lake can be considered to be hypertrophic. Schistosome dermatitis was observed. The water quality in general was considered to be acceptable; suggestions to maintain or improve the water quality are made.


1991 ◽  
Vol 24 (6) ◽  
pp. 171-177 ◽  
Author(s):  
Zeng Fantang ◽  
Xu Zhencheng ◽  
Chen Xiancheng

A real-time mathematical model for three-dimensional tidal flow and water quality is presented in this paper. A control-volume-based difference method and a “power interpolation distribution” advocated by Patankar (1984) have been employed, and a concept of “separating the top-layer water” has been developed to solve the movable boundary problem. The model is unconditionally stable and convergent. Practical application of the model is illustrated by an example for the Pearl River Estuary.


Sign in / Sign up

Export Citation Format

Share Document