Isotopic fractionation from deep roots to tall shoots: A forensic analysis of xylem water isotope composition in mature tropical savanna trees

Author(s):  
Adriana M. Vega-Grau ◽  
Jeffrey McDonnell ◽  
Susanne Schmidt ◽  
Mark Annandale ◽  
John Herbohn
The Holocene ◽  
2021 ◽  
pp. 095968362098803
Author(s):  
Emma Rehn ◽  
Cassandra Rowe ◽  
Sean Ulm ◽  
Craig Woodward ◽  
Michael Bird

Fire has a long history in Australia and is a key driver of vegetation dynamics in the tropical savanna ecosystems that cover one quarter of the country. Fire reconstructions are required to understand ecosystem dynamics over the long term but these data are lacking for the extensive savannas of northern Australia. This paper presents a multiproxy palaeofire record for Marura sinkhole in eastern Arnhem Land, Northern Territory, Australia. The record is constructed by combining optical methods (counts and morphology of macroscopic and microscopic charcoal particles) and chemical methods (quantification of abundance and stable isotope composition of pyrogenic carbon by hydrogen pyrolysis). This novel combination of measurements enables the generation of a record of relative fire intensity to investigate the interplay between natural and anthropogenic influences. The Marura palaeofire record comprises three main phases: 4600–2800 cal BP, 2800–900 cal BP and 900 cal BP to present. Highest fire incidence occurs at ~4600–4000 cal BP, coinciding with regional records of high effective precipitation, and all fire proxies decline from that time to the present. 2800–900 cal BP is characterised by variable fire intensities and aligns with archaeological evidence of occupation at nearby Blue Mud Bay. All fire proxies decline significantly after 900 cal BP. The combination of charcoal and pyrogenic carbon measures is a promising proxy for relative fire intensity in sedimentary records and a useful tool for investigating potential anthropogenic fire regimes.


2003 ◽  
Vol 69 (8) ◽  
pp. 4997-5000 ◽  
Author(s):  
Max L. Coleman ◽  
Magali Ader ◽  
Swades Chaudhuri ◽  
John D. Coates

ABSTRACT Perchlorate contamination can be microbially respired to innocuous chloride and thus can be treated effectively. However, monitoring a bioremediative strategy is often difficult due to the complexities of environmental samples. Here we demonstrate that microbial respiration of perchlorate results in a significant fractionation (∼−15‰) of the chlorine stable isotope composition of perchlorate. This can be used to quantify the extent of biotic degradation and to separate biotic from abiotic attenuation of this contaminant.


2006 ◽  
Vol 361 (1474) ◽  
pp. 1715-1720 ◽  
Author(s):  
M Anand ◽  
S.S Russell ◽  
R.L Blackhurst ◽  
M.M Grady

Recent spacecraft and lander missions to Mars have reinforced previous interpretations that Mars was a wet and warm planet in the geological past. The role of liquid water in shaping many of the surface features on Mars has long been recognized. Since the presence of liquid water is essential for survival of life, conditions on early Mars might have been more favourable for the emergence and evolution of life. Until a sample return mission to Mars, one of the ways of studying the past environmental conditions on Mars is through chemical and isotopic studies of Martian meteorites. Over 35 individual meteorite samples, believed to have originated on Mars, are now available for lab-based studies. Fe is a key element that is present in both primary and secondary minerals in the Martian meteorites. Fe-isotope ratios can be fractionated by low-temperature processes which includes biological activity. Experimental investigations of Fe reduction and oxidation by bacteria have produced large fractionation in Fe-isotope ratios. Hence, it is considered likely that if there is/were any form of life present on Mars then it might be possible to detect its signature by Fe-isotope studies of Martian meteorites. In the present study, we have analysed a number of Martian meteorites for their bulk-Fe-isotope composition. In addition, a set of terrestrial analogue material has also been analysed to compare the results and draw inferences. So far, our studies have not found any measurable Fe-isotopic fractionation in bulk Martian meteorites that can be ascribed to any low-temperature process operative on Mars.


2016 ◽  
Vol 13 (10) ◽  
pp. 3175-3186 ◽  
Author(s):  
Guo Chen ◽  
Karl Auerswald ◽  
Hans Schnyder

Abstract. Hydrophilic surfaces influence the structure of water close to them and may thus affect the isotope composition of water. Such an effect should be relevant and detectable for materials with large surface areas and low water contents. The relationship between the volumetric solid : water ratio and the isotopic fractionation between adsorbed water and unconfined water was investigated for the materials silage, hay, organic soil (litter), filter paper, cotton, casein and flour. Each of these materials was equilibrated via the gas phase with unconfined water of known isotopic composition to quantify the isotopic difference between adsorbed water and unconfined water. Across all materials, isotopic fractionation was significant (p<0.05) and negative (on average −0.91 ± 0.22 ‰ for 18∕16O and −20.6 ± 2.4 ‰ for 2∕1H at an average solid : water ratio of 0.9). The observed isotopic fractionation was not caused by solutes, volatiles or old water because the fractionation did not disappear for washed or oven-dried silage, the isotopic fractionation was also found in filter paper and cotton, and the fractionation was independent of the isotopic composition of the unconfined water. Isotopic fractionation became linearly more negative with increasing volumetric solid : water ratio and even exceeded −4 ‰ for 18∕16O and −44 ‰ for 2∕1H. This fractionation behaviour could be modelled by assuming two water layers: a thin layer that is in direct contact and influenced by the surface of the solid and a second layer of varying thickness depending on the total moisture content that is in equilibrium with the surrounding vapour. When we applied the model to soil water under grassland, the soil water extracted from 7 and 20 cm depth was significantly closer to local meteoric water than without correction for the surface effect. This study has major implications for the interpretation of the isotopic composition of water extracted from organic matter, especially when the volumetric solid : water ratio is larger than 0.5 or for processes occurring at the solid–water interface.


2020 ◽  
Author(s):  
Daniel Conley ◽  
Katherine Hendry

&lt;div&gt;&lt;span&gt;The silicon isotopic composition of sedimentary biogenic opal can be used to track shifts in the balance between silicon inputs to the ocean and outputs by burial. In addition to biosilicification and opal burial, the global cycles of climate (hydrology, weathering, glaciation, etc.), tectonics (volcanoes, LIPs, mountain building, etc.) and geochemistry (reverse weathering, inorganic Si precipitation, etc.) have driven variations in the global Si cycle over geologic time. Prior to the start of the Phanerozoic it is thought that burial in the global oceans was controlled inorganically through chert formation. The evolution of the Si depositing organisms, radiolarians and sponges, reduced oceanic dissolved Si, but the largest reductions occurred with the evolution of the diatoms bringing dissolved Si to the low concentrations (relative to saturating concentrations) observed today. However, the timing of the depletion of dissolved Si by diatoms is currently under debate.&lt;/span&gt;&lt;/div&gt;&lt;div&gt;&lt;span&gt;&amp;#160;&lt;/span&gt;&lt;/div&gt;&lt;div&gt;&lt;span&gt;Our understanding of the biological components of the Si cycle has grown enormously. In the last decade, silicon isotope ratios (expressed as &amp;#948;30Si) in marine microfossils are becoming increasingly recognised for their ability to provide insight into silicon cycling. In particular, the &amp;#948;30Si of deep-sea sponge spicules has been demonstrated to be a useful proxy for past dissolved Si concentrations. However, more recent studies find anomalies in the isotopic fractionation of sponge spicules that relate to skeletal morphology: reliable reconstructions of past dissolved Si can only be obtained using silicon isotope ratios derived from sponges with certain spicule types. We are applying &amp;#948;30Si proxies from biosiliceous material contained in sediments to generate robust estimates of the timing and magnitude of dissolved Si drawdown. We will provide fundamental new insights into the drawdown of dissolved Si and other key events, which reorganized the distribution of carbon and nutrients in seawater, with implications for productivity of the biological communities within the ancient oceans.&amp;#160;&lt;/span&gt;&lt;/div&gt;


1980 ◽  
Vol 26 (10) ◽  
pp. 1173-1177 ◽  
Author(s):  
R. G. L. McCready ◽  
V. A. Grinenko ◽  
H. R. Krouse

Proteus vulgaris metabolized thiosulfate to H2S. The amount evolved and its sulfur isotope composition identified it solely with sulfane sulfur. In contrast. Salmonella heidelberg sequentially reduced the sulfane sulfur of S2O32− with slight enrichment of the evolved sulfide in 32S and then reduced the sulfonate sulfur of S2O32− with large isotopic selectivities and an inverse isotopic fractionation pattern. The inverse isotope fractionation pattern for the H2S derived from the sulfonate sulfur was almost identical to that observed during the reduction of high concentrations of sulfite by S. heidelberg.


2021 ◽  
Vol 18 (19) ◽  
pp. 5363-5380
Author(s):  
Johannes Hepp ◽  
Christoph Mayr ◽  
Kazimierz Rozanski ◽  
Imke Kathrin Schäfer ◽  
Mario Tuthorn ◽  
...  

Abstract. The hydrogen isotope composition of leaf-wax-derived biomarkers, e.g., long-chain n-alkanes (δ2Hn-alkane), is widely applied in paleoclimate. However, a direct reconstruction of the isotope composition of source water based on δ2Hn-alkane alone is challenging due to the enrichment of heavy isotopes during evaporation. The coupling of δ2Hn-alkane with δ18O of hemicellulose-derived sugars (δ18Osugar) has the potential to disentangle this limitation and additionally to allow relative humidity reconstructions. Here, we present δ2Hn-alkane as well as δ18Osugar results obtained from leaves of Eucalyptus globulus, Vicia faba, and Brassica oleracea, which grew under controlled conditions. We addressed the questions of (i) whether δ2Hn-alkane and δ18Osugar values allow reconstructions of leaf water isotope composition, (ii) how accurately the reconstructed leaf water isotope composition enables relative humidity (RH) reconstruction, and (iii) whether the coupling of δ2Hn-alkane and δ18Osugar enables a robust source water calculation. For all investigated species, the n-alkane n-C29 was most abundant and therefore used for compound-specific δ2H measurements. For Vicia faba, additionally the δ2H values of n-C31 could be evaluated robustly. Regarding hemicellulose-derived monosaccharides, arabinose and xylose were most abundant, and their δ18O values were therefore used to calculate weighted mean leaf δ18Osugar values. Both δ2Hn-alkane and δ18Osugar yielded significant correlations with δ2Hleaf water and δ18Oleaf water, respectively (r2=0.45 and 0.85, respectively; p<0.001, n=24). Mean fractionation factors between biomarkers and leaf water were found to be −156 ‰ (ranging from −133 ‰ to −192 ‰) for εn-alkane/leaf water and +27.3 ‰ (ranging from +23.0 ‰ to 32.3 ‰) for εsugar/leaf water, respectively. Modeled RHair values from a Craig–Gordon model using measured Tair, δ2Hleaf water and δ18Oleaf water as input correlate highly significantly with modeled RHair values (R2=0.84, p<0.001, RMSE = 6 %). When coupling δ2Hn-alkane and δ18Osugar values, the correlation of modeled RHair values with measured RHair values is weaker but still highly significant, with R2=0.54 (p<0.001, RMSE = 10 %). Finally, the reconstructed source water isotope composition (δ2Hs and δ18Os) as calculated from our coupled approach matches the source water in the climate chamber experiment (δ2Htank water and δ18Otank water). This highlights the great potential of the coupled δ2Hn-alkane–δ18Osugar paleohygrometer approach for paleoclimate and relative humidity reconstructions.


2021 ◽  
Author(s):  
Clément Outrequin ◽  
Anne Alexandre ◽  
Christine Vallet-Coulomb ◽  
Clément Piel ◽  
Sébastien Devidal ◽  
...  

Abstract. Continental atmospheric relative humidity is a major climate parameter whose variability is poorly understood by global climate models. Models’improvement relies on model-data comparisons for past periods. However, there are no truly quantitative indicators of relative humidity for the pre-instrumental period. Previous studies highlighted a quantitative relationship between the triple oxygen isotope composition of phytoliths, and particularly the 17O-excess of phytoliths, and atmospheric relative humidity. Here, as part of a series of calibrations, we examine the respective controls of soil water isotope composition, temperature, CO2 concentration and relative humidity on phytolith 17O-excess. For that purpose, the grass species Festuca arundinacea was grown in growth chambers where these parameters were varying. The setup was designed to control the evolution of the triple oxygen isotope composition of phytoliths and all the water compartments of the soil-plant-atmosphere continuum. Different analytical techniques (cavity ring-down spectroscopy and isotope ratio mass spectrometry) were used to analyse water and silica. An inter-laboratory comparison allowed to strengthen the isotope data matching. Water and phytolith isotope compositions were compared to previous datasets obtained from growth chamber and natural tropical sites. The results show that the δ'18O value of the source water governs the starting point from which the triple oxygen isotope composition of leaf water, phytolith-forming water and phytoliths evolve. However, since the 17O-excess varies little in the growth chamber and natural source waters, this has no impact on the strong relative humidity-dependency of the 17O-excess of phytoliths, demonstrated for the 40–80 % relative humidity range. This relative humidity-dependency is not impacted by changes in air temperature or CO2 concentration either. A relative humidity proxy equation is proposed. Each per meg of change in phytolith 17O-excess reflects a change in atmospheric relative humidity of ca. 0.2 %. The ±15 per meg reproducibility on the measurement of phytolith 17O-excess corresponds to a ± 3.6 % precision on the reconstructed relative humidity. The low sensitivity of phytolith 17O-excess to climate parameters other than relative humidity makes it particularly suitable for quantitative reconstructions of continental relative humidity changes in the past.


2003 ◽  
Vol 2003 ◽  
pp. 159-159
Author(s):  
A. Balcaen ◽  
E. Claeys ◽  
V. Fievez ◽  
P. Boeckx ◽  
O. van Cleemput ◽  
...  

Stable isotopes have been extraordinarily helpful in understanding animal migration, diet, food webs and nutrient flow (Hilderbrand et al., 1996), based on the property that C3 and C4 plants possess distinctly different 13C/12C ratios (δ13C value) due to isotopic fractionation during photosynthetic carbon fixation (Smith & Epstein, 1971). Most woody species and temperate graminoids assimilate carbon via the Calvin cycle (C3), which discriminates stronger against the heavier isotope (13C) than Hatch-Slack (C4) species (tropical and subtropical graminoids and some shrubs). C3 and C4 plant species have mean δ13C values of -27 ‰ and -13 ‰ respectively (O’Leary, 1981). DeNiro & Epstein (1978) were one of the first to show that the isotopic composition of the whole animal body is similar to that of its diet. Other authors have also found relationships between the isotopic composition of animal tissues and the diet (González-Martin et al., 1999; Jones et al., 1979). The aim of this study was to investigate stable carbon isotope composition in sheep fed diets consisting of either C3 or C3+C4 plants.


Sign in / Sign up

Export Citation Format

Share Document