Biological traits can mediate species-specific, quasi-extinction risks of macroinvertebrates in streams experiencing frequent extreme floods

2022 ◽  
Vol 806 ◽  
pp. 150313
Author(s):  
Tsung-Tse Hsieh ◽  
Ming-Chih Chiu ◽  
Vincent H. Resh ◽  
Mei-Hwa Kuo
2019 ◽  
Author(s):  
Jiaqi Wu ◽  
Takahiro Yonezawa ◽  
Hirohisa Kishino

AbstractWhat determines genetic diversity and how it connects to the various biological traits is unknown. In this work, we offer answers to these questions. By comparing genetic variation of 14,671 mammalian gene trees with thousands of individual genomes of human, chimpanzee, gorilla, mouse and dog/wolf, we found that intraspecific genetic diversity is determined by long-term molecular evolutionary rates, rather than de novo mutation rates. This relationship was established during the early stage of mammalian evolution. Expanding this new finding, we developed a method to detect fluctuations of species-specific selection on genes as the deviations of intra-species genetic diversity predicted from long-term rates. We show that the evolution of epithelial cells, rather than of connective tissue, mainly contributes to morphological evolution of different species. For humans, evolution of the immune system and selective sweeps subjected by infectious diseases are most representative of adaptive evolution.


Plant Disease ◽  
2008 ◽  
Vol 92 (7) ◽  
pp. 1104-1110 ◽  
Author(s):  
Blanca B. Landa ◽  
Juan E. Palomares Rius ◽  
Nicola Vovlas ◽  
Regina M. D. G. Carneiro ◽  
Carla M. N. Maleita ◽  
...  

In the past, the distribution of Meloidogyne hispanica, the Seville root-knot nematode, appeared to be restricted to the southern part of Spain and Prunus spp.; however, its distribution has been confirmed to be worldwide because it occurs in all continents (Europe, Africa, Asia, Australia, and North, Central, and South America). Differentiation of M. hispanica from other Meloidogyne spp., mainly M. arenaria, can be very difficult using morphological and biological traits data. These species are quite similar and can be regularly confused in inaccurate taxonomic comparisons. In this study, species-specific polymerase chain reaction (PCR) and phylogenetic analysis of sequences from three ribosomal (r)DNA regions (18S, internal transcribed spacer [ITS]1-5.8S-ITS2, and D2-D3 of 28S) were used to characterize three M. hispanica isolates from different geographical origins (Brazil, Portugal, and Spain). Molecular analyses showed identical sequences for all three isolates for the three rDNA regions. Maximum parsimony analysis of the three rDNA regions and the species-specific PCR demonstrated and supported the differentiation of M. hispanica from M. incognita, M. javanica, and M. arenaria and from all described root-knot nematode species.


2016 ◽  
Vol 8 ◽  
pp. IJIS.S32481 ◽  
Author(s):  
Paul-André Calatayud ◽  
Stéphane Dupas ◽  
Brigitte Frérot ◽  
Gilles Genestier ◽  
Peter Ahuya ◽  
...  

The display of the reproductive behavior in most noctuid Lepidoptera follows a diel periodicity and is limited to a precise period of either the day or the night. These behavioral traits and the sex pheromone chemistry can be species specific and thus might be linked to the phylogeny. The objective of this study was to test the relationship of these reproductive traits with phylogeny. The study was undertaken using eight closely related species of noctuid stem borers, which are easy to rear under artificial conditions, namely, Busseola fusca, B. nairobica, B. sp. nr. segeta, Manga melanodonta, M. sp. nr. nubifera, Pirateolea piscator, Sesamia calamistis, and S. nonagrioides. For each species, the adult emergence period, the mating time, and the oviposition period were estimated, referred as biological traits. The components of the sex pheromones emitted by the females of each species were also analyzed by gas chromatography–mass spectrometry. Among the biological traits measured, only those linked to the oviposition pattern (timing and egg loads per night) were significantly correlated with the phylogeny of these species. For the sex pheromone components, among the 13 components identified in all species, only four, namely, Z9-tetradecenyl acetate (Z9-TDA), Z11-TDA, E11-TDA, and Z11-hexadecenyl acetate (Z11-HDA), showed the highest significant correlations with the phylogeny. These results suggest that among the different reproductive traits evaluated, only few are phylogenetically constrained. Their involvement in the reinforcement of ecological speciation in noctuid stem borers is discussed.


2015 ◽  
Vol 81 (16) ◽  
pp. 5375-5386 ◽  
Author(s):  
Anna K. Snyder ◽  
Rita V. M. Rio

ABSTRACTClosely related ancient endosymbionts may retain minor genomic distinctions through evolutionary time, yet the biological relevance of these small pockets of unique loci remains unknown. The tsetse fly (Diptera: Glossinidae), the sole vector of lethal African trypanosomes (Trypanosomaspp.), maintains an ancient and obligate mutualism with species belonging to the gammaproteobacteriumWigglesworthia. Extensive concordant evolution with associatedWigglesworthiaspecies has occurred through tsetse species radiation. Accordingly, the retention of unique symbiont loci betweenWigglesworthiagenomes may prove instrumental toward host species-specific biological traits. Genome distinctions between “Wigglesworthiamorsitans” (harbored withinGlossina morsitansbacteriomes) and the basal speciesWigglesworthia glossinidia(harbored withinGlossina brevipalpisbacteriomes) include the retention of chorismate and downstream folate (vitamin B9) biosynthesis capabilities, contributing to distinct symbiont metabolomes. Here, we demonstrate that theseW. morsitanspathways remain functionally intact, with folate likely being systemically disseminated through a synchronously expressed tsetse folate transporter within bacteriomes. The folate produced byW. morsitansis demonstrated to be pivotal forG. morsitanssexual maturation and reproduction. Modest differences between ancient symbiont genomes may still play key roles in the evolution of their host species, particularly if loci are involved in shaping host physiology and ecology. Enhanced knowledge of theWigglesworthia-tsetse mutualism may also provide novel and specific avenues for vector control.


2020 ◽  
Author(s):  
Blanca Figuerola ◽  
Alyce M. Hancock ◽  
Narissa Bax ◽  
Vonda Cummings ◽  
Rachel Downey ◽  
...  

AbstractUnderstanding the vulnerability of marine calcifiers to ocean acidification is a critical issue, especially in the Southern Ocean (SO), which is likely to be the one of the first, and most severely affected regions. Since the industrial revolution, ~30% of anthropogenic CO2 has been absorbed by the oceans. Seawater pH levels have already decreased by 0.1 and are predicted to decline by ~ 0.3 by the year 2100. This process, known as ocean acidification (OA), is shallowing the saturation horizon, which is the depth below which calcium carbonate (CaCO3) dissolves, likely increasing the vulnerability of many marine calcifiers to dissolution. The negative impact of OA may be seen first in species depositing more soluble CaCO3 mineral phases such as aragonite and high-Mg calcite (HMC). These negative effects may become even exacerbated by increasing sea temperatures. Here we combine a review and a quantitative meta-analysis to provide an overview of the current state of knowledge about skeletal mineralogy of major taxonomic groups of SO marine calcifiers and to make predictions about how OA might affect different taxa. We consider their geographic range, skeletal mineralogy, biological traits and potential strategies to overcome OA. The meta-analysis of studies investigating the effects of the OA on a range of biological responses such as shell state, development and growth rate shows response variation depending on mineralogical composition. Species-specific responses due to mineralogical composition suggest taxa with calcitic, aragonitic and HMC skeletons may be more vulnerable to the expected carbonate chemistry alterations, and low magnesium calcite (LMC) species may be mostly resilient. Environmental and biological control on the calcification process and/or Mg content in calcite, biological traits and physiological processes are also expected to influence species specific responses.


2021 ◽  
Vol 8 ◽  
Author(s):  
Blanca Figuerola ◽  
Alyce M. Hancock ◽  
Narissa Bax ◽  
Vonda J. Cummings ◽  
Rachel Downey ◽  
...  

Understanding the vulnerability of marine calcifiers to ocean acidification is a critical issue, especially in the Southern Ocean (SO), which is likely to be the one of the first, and most severely affected regions. Since the industrial revolution, ~30% of anthropogenic CO2 has been absorbed by the global oceans. Average surface seawater pH levels have already decreased by 0.1 and are projected to decline by ~0.3 by the year 2100. This process, known as ocean acidification (OA), is shallowing the saturation horizon, which is the depth below which calcium carbonate (CaCO3) dissolves, likely increasing the vulnerability of many resident marine calcifiers to dissolution. The negative impact of OA may be seen first in species depositing more soluble CaCO3 mineral phases such as aragonite and high-Mg calcite (HMC). Ocean warming could further exacerbate the effects of OA in these particular species. Here we combine a review and a quantitative meta-analysis to provide an overview of the current state of knowledge about skeletal mineralogy of major taxonomic groups of SO marine calcifiers and to make projections about how OA might affect a broad range of SO taxa. We consider a species' geographic range, skeletal mineralogy, biological traits, and potential strategies to overcome OA. The meta-analysis of studies investigating the effects of the OA on a range of biological responses such as shell state, development and growth rate illustrates that the response variation is largely dependent on mineralogical composition. Species-specific responses due to mineralogical composition indicate that taxa with calcitic, aragonitic, and HMC skeletons, could be at greater risk to expected future carbonate chemistry alterations, and low-Mg calcite (LMC) species could be mostly resilient to these changes. Environmental and biological control on the calcification process and/or Mg content in calcite, biological traits, and physiological processes are also expected to influence species-specific responses.


Author(s):  
Linda Sicko-Goad

Although the use of electron microscopy and its varied methodologies is not usually associated with ecological studies, the types of species specific information that can be generated by these techniques are often quite useful in predicting long-term ecosystem effects. The utility of these techniques is especially apparent when one considers both the size range of particles found in the aquatic environment and the complexity of the phytoplankton assemblages.The size range and character of organisms found in the aquatic environment are dependent upon a variety of physical parameters that include sampling depth, location, and time of year. In the winter months, all the Laurentian Great Lakes are uniformly mixed and homothermous in the range of 1.1 to 1.7°C. During this time phytoplankton productivity is quite low.


2005 ◽  
Vol 173 (4S) ◽  
pp. 18-18
Author(s):  
Joseph C. Liao ◽  
Mitra Mastali ◽  
David A. Haake ◽  
Bernard M. Churchill

Sign in / Sign up

Export Citation Format

Share Document