Microplastics pollution in the soils of various land-use types along Sheshui River basin of Central China

2022 ◽  
Vol 806 ◽  
pp. 150620
Author(s):  
Xiaoning Liu ◽  
Na Tang ◽  
Wanggan Yang ◽  
Jianbo Chang
2020 ◽  
Vol 12 (1) ◽  
pp. 1406-1420
Author(s):  
Jianwei Wang ◽  
Kun Wang ◽  
Tianling Qin ◽  
Hanjiang Nie ◽  
Zhenyu Lv ◽  
...  

AbstractLand use/cover change plays an important role in human development and environmental health and stability. Markov chain and a future land use simulation model were used to predict future change and simulate the spatial distribution of land use in the Huang-Huai-Hai river basin. The results show that cultivated land and grassland are the main land-use types in the basin, accounting for about 40% and 30%, respectively. The area of cultivated land decreased and artificial surfaces increased from 1980 to 2010. The degree of dynamic change of land use after the 1990s was greater than that before the 1990s. There is a high probability of exchange among cultivate land, forest and grassland. The area of forest decreased before 2000 and increased after 2000. Under the three emission scenarios (RCP2.6, RCP4.5, and RCP8.5) of IPSL-CM5A-LR climate model, the area of cultivated land will decrease and that of grassland will increase in the upstream area while it will decrease in the downstream area. The above methods and rules will be of great help to future land use planning.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9386
Author(s):  
Yanlin Li ◽  
Chunmei Zeng ◽  
Meijun Long

The diversity and community distribution of soil bacteria in different land use types in Yangtze River Basin, Chongqing Municipality were studied by using Illumina MiSeq analysis methods. Soil physical and chemical properties were determined, and correlation analyses were performed to identify the key factors affecting bacterial numbers and α-diversity in these soils. The results showed that the soil physical and chemical properties of different land use types decrease in the order: mixed forest (M2) > pure forest (P1) > grassland (G3) > bare land (B4). There were significant differences in bacterial diversity and communities of different land use types. The diversity of different land use types showed the same sequence with the soil physical and chemical properties. The abundance and diversity of bacterial in M2 and P1 soils was significantly higher than that in G3 and B4 soils. At phylum level, G3 and B4 soils were rich in only Proteobacteria and Actinobacteria, whereas M2 and P1 soils were rich in Proteobacteria, Actinobacteria and Firmicutes. At genus level, Faecalibacterium and Agathobacter were the most abundant populations in M2 soil and were not found in other soils. Pearson correlation analysis showed that soil moisture content, pH, AN, AP, AK and soil enzyme activity were significantly related to bacterial numbers, diversity and community distribution.


2020 ◽  
Vol 20 (3) ◽  
pp. 1046-1058
Author(s):  
Fan Gao ◽  
Bing He ◽  
Songsong Xue ◽  
Yizhen Li

Abstract Based on the Soil and Water Assessment Tool (SWAT) model, the monthly runoff processes of two land-use types in 2000 and 2015 were simulated in this paper. The relationship between runoff and landscape pattern was analyzed, and the spatial correlation between runoff and landscape pattern analyzed using the geographic weighted regression model combined with the change of landscape pattern in the study area from 2000 to 2015. The results show the following. (1) The SWAT model can simulate the monthly runoff processes in the catchment area of the Ulungur River Basin (URB) under different land-use types for 2000 and 2015, but the simulation effect in 2000 was found to be better than that in 2015. (2) From 2000 to 2015, the area of woodland and grassland decreased. Runoff was positively correlated with woodland, grassland, largest patch index, mean patch area (AREA_MN), and contagion index, and negatively correlated with others. This indicates that the landscape fragmentation of URB was aggravated in 2000–2015, the landscape balance was destroyed, and the ability of rainfall interception and water conservation was weakened. (3) Landscape pattern indicators of grassland had a negative spatial impact on URB runoff, and the northern region of URB was more severely affected in 2015 than in 2000. AREA_MN landscape pattern index had a positive impact on runoff in the northern part of URB, and the positive impact in northern URB in 2000 was better than that in 2015.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Xiaoqing Shi ◽  
Tianling Qin ◽  
Denghua Yan ◽  
Ruochen Sun ◽  
Shuang Cao ◽  
...  

This study analysed the temporal and spatial changes in the water yield coefficient (WYC), which represents the ratio of the gross amount of water resources to precipitation. Factors such as precipitation, rainstorm days, rainless days, vegetation cover change, and land use/cover change were considered to determine the causes of these changes. The results led to the following conclusions: (1) The average annual WYC of the Huang-Huai-Hai River Basin is between 0.03 and 0.58, with an average value of 0.17, which is smaller than the national average WYC of 0.4. (2) Temporally, the WYC varied slightly, with the western part showing a negative trend and the eastern part showing a positive trend. The WYC is positively correlated with precipitation, rainstorm days, and the normalized difference vegetation index (NDVI) and negatively correlated with rainless days. However, a slower change in NDVI produced a faster change in WYC. In areas with land use types exhibiting a large evapotranspiration decrease, the rate of change in the WYC increased. (3) Spatially, the distribution is fairly regular, exhibiting a gradual increase from the northern part of the Yellow River Basin (WYC < 0.1) to the surrounding areas. When the WYC is correlated with precipitation, rainstorm days, rainless days, and NDVI, the R2 values of the linear fitting results are 0.98, 0.91, 0.96, and 0.73, respectively. The WYC is positively correlated with precipitation, rainstorm days, and vegetation coverage and negatively correlated with rainless days, but the correlation coefficient is greatly influenced by the precipitation characteristics and land use types. In areas featuring high proportions of land use types associated with high evapotranspiration, the average WYC is low.


2013 ◽  
Vol 13 (6) ◽  
pp. 411-422
Author(s):  
Jung Ho Lee ◽  
Yang Ho Song ◽  
Dongho Kim ◽  
Suyoung Park ◽  
Jiyeon Kim ◽  
...  

2020 ◽  
Vol 38 (5) ◽  
pp. 5697-5705
Author(s):  
Jinxin Zhang ◽  
Hui Li ◽  
Xiufang Zhang ◽  
Hua Yu ◽  
Fengna Liang ◽  
...  

Author(s):  
Tekleweini Gereslassie ◽  
Ababo Workineh ◽  
Onyango Janet Atieno ◽  
Jun Wang

Organochlorine pesticides are groups of chemicals applied to prevent pest and insect infestation. This study was aimed at investigating the concentration, potential sources, cancer risk and ecological toxicity of organochlorine pesticides (OCPs) in Huangpi district, Wuhan, China. Eight OCPs in soil samples collected from four land-use types at depths of 0–10 and 10–20 cm were examined. Sample extraction was carried out by solid phase matrix extraction method and analyzed using Agilent gas chromatograph 7890B equipped with electron capture detectors (ECD). The total concentration of OCPs ranged from 0.00–32.7 ng g−1 in the surface and 0.01–100.45 ng g−1 in the subsurface soil layer. Beta hexachlorocyclohexanes (β-HCH) with 2.20 and 7.71 ng g−1 in the surface and subsurface soil layers, respectively, was the dominant compound. The mean concentrations of OCPs in all samples were less than the threshold values for hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in China soil. Concentration of OCPs in the four land-use types were in the order of: paddy field > barren land > farmland > plastic greenhouse. Results of composition analysis revealed recent application of lindane as a major and historical use of new technical HCHs as a minor source of HCHs. On the other hand, application of new technical p,p’-DDT is the main source of DDTs in the study area. The estimated lifetime average daily dose, incremental lifetime cancer risks and hazard quotient values revealed that there is less likelihood of carcinogenic and noncarcinogenic health risks on the local residents.


Sign in / Sign up

Export Citation Format

Share Document