An integrated trading platform for construction and demolition waste recovery in a circular economy

2022 ◽  
Vol 25 ◽  
pp. 100597
Author(s):  
Weiwei Wu ◽  
Linghui Xie ◽  
Jian Li Hao
2021 ◽  
Vol 18 (4) ◽  
pp. 347-369
Author(s):  
Jonas Voorter ◽  
Christof Koolen

Abstract The construction sector plays a crucial role in the transition to a circular economy and a more sustainable society. With this objective in mind, Flanders – the Dutch speaking part of Belgium – makes use of a traceability procedure for construction and demolition waste in order to guarantee that value can be derived from downstream waste processing activities. This article takes this traceability procedure as a legal case study and examines if the use of blockchain technology could lead to even stronger supply chains, better data management, and, more generally, a smoother transition to circular practices in the construction sector.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2970 ◽  
Author(s):  
Clarence P. Ginga ◽  
Jason Maximino C. Ongpeng ◽  
Ma. Klarissa M. Daly

Construction and demolition waste (CDW) accounts for at least 30% of the total solid waste produced around the world. At around 924 million tons in the European Union in 2016 and 2.36 billion tons in China in 2018, the amount is expected to increase over the next few years. Dumping these wastes in sanitary landfills has always been the traditional approach to waste management but this will not be feasible in the years to come. To significantly reduce or eliminate the amount of CDW being dumped, circular economy is a possible solution to the increasing amounts of CDW. Circular economy is an economic system based on business models which replaces the end-of-life concept with reducing, reusing, recycling, and recovering materials. This paper discusses circular economy (CE) frameworks—specifically material recovery and production highlighting the reuse and recycling of CDW and reprocessing into new construction applications. Likewise, a literature review into recent studies of reuse and recycling of CDW and its feasibility is also discussed to possibly prove the effectivity of CE in reducing CDW. Findings such as effectivity of recycling CDW into new construction applications and its limitations in effective usage are discussed and research gaps such as reuse of construction materials are also undertaken. CE and recycling were also found to be emerging topics. Observed trends in published articles as well as the use of latent Dirichlet allocation in creating topic models have shown a rising awareness and increasing research in CE which focuses on recycling and reusing CDW.


2015 ◽  
Vol 5 (2) ◽  
pp. 81-86
Author(s):  
Irina Smical ◽  
F. Filip-Văcărescu ◽  
G. Danku ◽  
V. Paşca

Abstract The recycling issues related to the construction and demolition (C&D) wastes in the sustainable development and the circular economy context represent a continuous challenge for researchers. This paper reveals the possibility to recycle the hardened mortar recovered from C&D wastes. Thus, the recovered hardened mortar with grains size less than 16 mm was used in the concrete structure. The compression resistance of the final concrete was determined using a Heckert 3000 KN testing machine and the results showed a better compressive strength for the samples with C&D waste content than the standard sample of about 1.19 times. This is a good premise for improving the researches related to C&D waste usage in concrete production.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 76
Author(s):  
Callun Keith Purchase ◽  
Dhafer Manna Al Zulayq ◽  
Bio Talakatoa O’Brien ◽  
Matthew Joseph Kowalewski ◽  
Aydin Berenjian ◽  
...  

Conventionally, in a linear economy, C&D (Construction and Demolition) waste was considered as zero value materials, and, as a result of that, most C&D waste materials ended up in landfills. In recent years, with the increase in the awareness around sustainability and resource management, various countries have started to explore new models to minimize the use of limited resources which are currently overused, mismanaged, or quickly depleting. In this regard, the implementation of CE (Circular Economy) has emerged as a potential model to minimize the negative impact of C&D wastes on the environment. However, there are some challenges hindering a full transition to CE in the construction and demolition sectors. Therefore, this review paper aims to critically scrutinize different aspects of C&D waste and how CE can be integrated into construction projects. Reviewing of the literature revealed that the barriers in the implementation of CE in C&D waste sectors fall in five main domains, namely legal, technical, social, behavioral, and economic aspects. In this context, it was found that policy and governance, permits and specifications, technological limitation, quality and performance, knowledge and information, and, finally, the costs associated with the implementation of CE model at the early stage are the main barriers. In addition to these, from the contractors’ perspective, C&D waste dismantling, segregation, and on-site sorting, transportation, and local recovery processes are the main challenges at the start point for small-scale companies. To address the abovementioned challenges, and also to minimize the ambiguity of resulting outcomes by implementing CE in C&D waste sectors, there is an urgent need to introduce a global framework and a practicable pathway to allow companies to implement such models, regardless of their scale and location. Additionally, in this paper, recommendations on the direction for areas of future studies for a reduction in the environmental impacts have been provided. To structure an effective model approach, the future direction should be more focused on dismantling practices, hazardous material handling, quality control on waste acceptance, and material recovery processes, as well as a incentivization mechanism to promote ecological, economic, and social benefits of the CE for C&D sectors.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Iva Kovacic ◽  
Meliha Honic ◽  
Marijana Sreckovic

The construction industry is one of the world´s largest consumers of resources (sand, building materials) and produces significant amounts of waste. Simultaneously it is one of the least digitalized industries. With increasing levels of urbanization, scarceness of resources and lack of landfills, the policy of circular economy (CE) is becoming increasingly important in the construction industry. The European Union is obliging material recovery of construction and demolition waste to a minimum of 70% by weight by 2020 for all new construction projects. Simultaneously, digitalization in construction is one of the major goals in the EU digitalization action plan. We thereby hypothesize that digital technologies have significant potential to support CE in Architecture, Engineering and Construction (AEC) in multiple ways – for assessment of resources as well as for the prediction and optimization of upcoming waste and recycling masses. Based on our conducted and ongoing research projects - BIMaterial: Process-Design for a BIM-based Material Passport; SCI_BIM: Scanning and data capturing for the Integrated Resources and Energy Assessment using Building Information Modeling; and finally a Case Study reviewing digital tools and processes within a large design and planning company (DPC) - we assess to which degree and to what purpose digital technologies are used, and define the potentials and challenges for the realization of CE objectives in the construction industry. Based on the conducted assessment, we propose a framework for a Digital Platform for Circular Economy (DEEP), integrating various stakeholders and data repositories on the external (inter)-firm and internal (intra)-firm level, using open interfaces. Such a platform for the AEC aims to optimize the use of resources in the circular economy – from cradle to grave, foster mutual learning and coordination, and finally generate added value along the life cycle of a building project.


Author(s):  
Vasilios Papastamoulis ◽  
Kerry London ◽  
Robert Crocker ◽  
Petros Patias

The fourth industrial revolution transforms the built environment through several highly intelligence systems such as drones, 3D printers, robotics, as well as building information modelling (BIM) and geographic information systems (GIS). This transformation has widely been applied in buildings. However, to establish environmental sustainability in the built environment, this transformation needs to be expanded in other sectors that impact climate change such as construction and demolition waste materials. The aim of this chapter is to introduce a new conceptual model that can measure construction and demolition waste in real time and optimise their carbon footprint spatially. A quantitative methodology that embraces a measuring protocol and geospatial research method is proposed for this purpose. The proposed model is capable of measuring the recycling potential result in construction sites to support the circular economy as well as to mitigate the associated carbon dioxide emissions (CO2) with materials' embodied energy, transportation, and treatment.


2021 ◽  
Vol 13 (4) ◽  
pp. 2139
Author(s):  
Alessandra Bonoli ◽  
Sara Zanni ◽  
Francisco Serrano-Bernardo

Climate change and ecological crisis are a huge threat to Europe and the world. To overcome these challenges, Europe adopted the New Green Deal as a strategy transforming the Union into a competitive resource-efficient economy without greenhouse gas emissions and become carbon neutral in a few decades. The European Green Deal includes the new circular economy action plan, highlighting the importance of a products’ “green design”, saving raw materials, and waste prevention oriented along the entire life cycle of products. Construction and buildings represent one of the key topics for the green transition. In the European Union, buildings are responsible for 40% of our energy consumption and 36% of greenhouse gas emissions, which are mainly caused by construction, usage, renovation, and demolition. Improving environmental efficiency can play a key role in reaching the carbon neutrality of Europe that is expected to be achieved by 2050. In this research, it was explored how Eco-design, as an innovative approach in buildings and construction, Life Cycle Thinking and Life Cycle Assessment, as fundamental supporting tools in sustainability, and finally appropriate and effective Construction and Demolition Waste recycling processes, particularly oriented to concrete recycling according to the case studies analyzed, can promote a circular economy in buildings and construction.


2020 ◽  
Vol 12 (7) ◽  
pp. 2835 ◽  
Author(s):  
Carolina Piña Ramírez ◽  
Alejandra Vidales Barriguete ◽  
Julián García Muñoz ◽  
Mercedes del Río Merino ◽  
Patricia del Solar Serrano

Nowadays, nobody can deny that climate change is a reality and that the life cycle of buildings contributes greatly to that reality. Therefore, proposals such as the circular economy must be integrated into the construction sector. This article shows part of the results of a research project whose objective is to introduce circular economy criteria in building materials, seeking new uses for construction and demolition waste from buildings. In particular, this article analyses the possibility of replacing fibres currently used to reinforce cement mortars with recycled fibres. After consulting the bibliography, we can conclude that some studies analyse the behaviour of cement mortars reinforced with different types of fibres, but none has been found that analyses the behaviour of these mortars for the application of continuous coatings. For this purpose, a two-stage experimental plan is designed to test cement mortar samples with different types of fibres, recycled fibres and commercial fibres, taking into consideration the characteristics that these mortars have to comply to be applied as continuous coatings. Moreover, a detailed study about the porosity of these mortars and its influence on how the mortars behave with regard to compression, water vapour permeability and impermeability has been conducted. From the results obtained, it can be concluded that the mortars containing recycled fibres have very similar resistance, absorption and permeability values to those containing commercial fibres, so that they might be suitable for application as external coatings.


Sign in / Sign up

Export Citation Format

Share Document