Multiple gradient structures driving higher tensile strength and good capacity to absorbed energy in aluminum wire processed by cryogenic pre-torsion

2022 ◽  
Vol 210 ◽  
pp. 114436
Author(s):  
S.L. Cai ◽  
D.Q. Li ◽  
S.C. Liu ◽  
Y.F. Cheng ◽  
J.H. Li ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Qi Ping ◽  
Zhaohui Fang ◽  
Dongdong Ma ◽  
Hao Zhang

To investigate the dynamic splitting tensile mechanical property of limestone under coupled static and dynamic state, the dynamic split tensile tests of limestone under one-dimensional coupled static and dynamic load with different strain rates were performed with the help of modified split Hopkinson pressure bar (SHPB) equipment. The dynamic splitting tensile mechanical property and energy dissipation characteristic under two stress states were also compared in this research. Test results indicated that the dynamic tensile strength of the limestone specimen increased with the increase of average strain rate, exhibiting an obvious strain rate effect. In addition, dynamic tensile strength under uniaxial state was higher than that under one-dimensional coupled static and dynamic load state under the same test condition. Moreover, the deformation modulus increased with increasing average strain rate under uniaxial state, while it decreased with increasing average strain rate under coupled static and dynamic state. Both the reflected energy and absorbed energy linearly increased with increasing incident energy. The preload in the radial direction could increase the reflected energy and decrease the absorbed energy. Moreover, the transmitted energy with preload state was slightly lower than that under uniaxial state. Finally, the dynamic tensile strength of limestone specimen increased as a power function with increasing absorbed energy.


Fibers ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 19
Author(s):  
Hadeel K. Awad

The construction of highly safe and durable buildings that can bear accident damage risks including fire, earthquake, impact, and more, can be considered to be the most important goal in civil engineering technology. An experimental investigation was prepared to study the influence of adding various percentages 0%, 1.0%, and 1.5% of micro steel fiber volume fraction (Vf) to reactive powder concrete (RPC)—whose properties are compressive strength, splitting tensile strength, flexural strength, and absorbed energy—after the exposure to fire flame of various burning temperatures 300, 400, and 500 °C using gradual-, foam-, and sudden-cooling methods. The outcomes of this research proved that the maximum reduction in mechanical properties is detected in case of 0% addition at burning temperature of 500 °C using sudden cooling to be 63.90%, 55.77% and 53.8% for compressive, splitting tensile, and flexural strength, respectively, while using 1.5% produced a modification in compressive strength, splitting tensile strength, and flexural strength to 6.67%, 4.15%, and 7.00% respectively, and 7.10 kN·mm for the absorbed energy for gradual cooling at 300 °C. From the results, the adopted cooling methods can be ordered according to their negative influence by sudden, foam, and gradual, while the optimum percentage of (Vf) is 1.5% when burning at 300 °C for all methods of cooling. 1.0% is considered the optimum percentage for all burning temperatures that exceed 400 °C using sudden-cooling method.


2017 ◽  
Vol 13 (2) ◽  
Author(s):  
Ahmed Naif Al-Khazraji ◽  
Samir Ali Amin ◽  
Husam Ahmed Al-Warmizyari

Changes in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properties. Tensile properties of stainless steel (AISI 321H) were decreased as temperature increases; the trend of properties decreasing for the samples of un-used tube material is the same for the ex-used material. The trend of stress-strain curve will not change due to elevated temperature exposure for long time of service, except the yield strength will be higher in this diagram. The yield strength increased under these conditions, but the ability of material  which is elongated will decrease. Hardness and absorbed energy increased by 11.28 and 14% respectively when the material is aged for long time under effect of high temperature accompanied with creep effect. Keywords:  Hardness, Impact, Mechanical Properties, Stainless Steel 321H, Mechanical Properties, Tensile Strength, Tube Furnace.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4385
Author(s):  
Bentolhoda Adosi ◽  
Seyed Abbas Mirjalili ◽  
Mostafa Adresi ◽  
Jean-Marc Tulliani ◽  
Paola Antonaci

Cement composites (CC) are among the composites most widely used in the construction industry, such as a durable waterproof and fire-resistant concrete layer, slope protection, and application in retaining wall structures. The use of 3D fabric embedded in the cement media can improve the mechanical properties of the composites. The use of calcium aluminate cement (CAC) can accelerate the production process of the CC and further contribute to improving the mechanical properties of the cement media. The purpose of this study is to promote the use of these cementitious composites by deepening the knowledge of their tensile properties and investigating the factors that may affect them. Therefore, 270 specimens (three types of stitch structure, two directions of the fabric, three water temperature values, five curing ages, with three repetitions) were made, and the tensile properties, absorbed energy, and the inversion effects were evaluated. The results showed that the curing conditions of the reinforced cementitious composite in water with temperature values of 7, 23, and 50 °C affect the tensile behavior. The tensile strength of the CCs cured in water with a temperature of 23 °C had the highest tensile strength, while 7 and 50 °C produced a lower tensile strength. The inversion effect has been observed in CC at 23 °C between 7 and 28 days, while this effect has not occurred in other curing temperature values. By examining three commercial types of stitches in fabrics and the performance of the reinforced cementitious composites in the warp direction, it was found that the structure of the “Tuck Stitch” has higher tensile strength and absorbed energy compared to “Knit stitch” and “Miss Stitch”. The tensile strength and fracture energy of the CC reinforced with “Tuck Stitch” fabric in the warp direction, by curing in 23 °C water for 7 days, were found to be 2.81 MPa and 1.65 × 103 KJ/m3, respectively. These results may be helpful in selecting the design and curing parameters for the purposes of maximizing the tensile properties of textile CAC composites.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Author(s):  
W.W. Adams ◽  
S. J. Krause

Rigid-rod polymers such as PBO, poly(paraphenylene benzobisoxazole), Figure 1a, are now in commercial development for use as high-performance fibers and for reinforcement at the molecular level in molecular composites. Spinning of liquid crystalline polyphosphoric acid solutions of PBO, followed by washing, drying, and tension heat treatment produces fibers which have the following properties: density of 1.59 g/cm3; tensile strength of 820 kpsi; tensile modulus of 52 Mpsi; compressive strength of 50 kpsi; they are electrically insulating; they do not absorb moisture; and they are insensitive to radiation, including ultraviolet. Since the chain modulus of PBO is estimated to be 730 GPa, the high stiffness also affords the opportunity to reinforce a flexible coil polymer at the molecular level, in analogy to a chopped fiber reinforced composite. The objectives of the molecular composite concept are to eliminate the thermal expansion coefficient mismatch between the fiber and the matrix, as occurs in conventional composites, to eliminate the interface between the fiber and the matrix, and, hopefully, to obtain synergistic effects from the exceptional stiffness of the rigid-rod molecule. These expectations have been confirmed in the case of blending rigid-rod PBZT, poly(paraphenylene benzobisthiazole), Figure 1b, with stiff-chain ABPBI, poly 2,5(6) benzimidazole, Fig. 1c A film with 30% PBZT/70% ABPBI had tensile strength 190 kpsi and tensile modulus of 13 Mpsi when solution spun from a 3% methane sulfonic acid solution into a film. The modulus, as predicted by rule of mixtures, for a film with this composition and with planar isotropic orientation, should be 16 Mpsi. The experimental value is 80% of the theoretical value indicating that the concept of a molecular composite is valid.


2001 ◽  
Vol 40 (01) ◽  
pp. 1-6 ◽  
Author(s):  
M. Zimny ◽  
M. Schreckenberger ◽  
P. Reinartz ◽  
B. Nowak ◽  
E. Ostwald ◽  
...  

Summary Aim of this study was a characterization of radioiodine therapy (RIT) failures in Graves’ disease without simultaneous Carbimazole. Method: 226 patients with a confirmed diagnosis of Graves’ disease received 686.8 ± 376.4 MBq of iodine-131 orally for thyroid ablation. Target dose was 250 Gy. All patients were followed up for 6 months. Therapy failures were compared with successes regarding possible influencing variables initial thyroid volume, thyroid function, immune activity (TRAb), 1-131 uptake, effective half-life, absorbed energy dose, age and gender. Results: 212 of 226 patients (93.8%) were treated successfully, 14 (6.2%) showed a hyperthyroidism relapse within 6 months which required a second radioiodine therapy. A success rate of 92.5% (62/67) could also be achieved with 67 patients who were hyperthyroid at the time of RIT. Compared to the therapy successes, the 14 failures achieved significantly lower absorbed doses (223.8 ±76.6 Gyvs. 285.2 ±82.1 Gy, ρ <0.005), but with no significant differences regarding age, thyroid volume, function or TRAb (all ρ >0.2). Of the 14 failures, η = 8 reached an absorbed dose <200 Gy and η = 1 a dose <250 Gy, although 5 of the failures reached an absorbed dose of >250 Gy. Stepwise logistic regression revealed only absorbed energy dose as a variable significantly influencing therapy success (p <0.005), but no influence of initial thyroid volume, function, TRAb value, age (all ρ >0.2) or gender (p = 0.13). Two-tailed Fisher’s exact test showed no significant influence of gender on success rates (failures/successes: male 1 /36, female 13/176, ρ = 0.48). Conclusions: Except for the absorbed energy dose, no other significant variable influencing the outcome of radioiodine therapy in Graves’ disease without simultaneous Carbimazole could be found. It should be noted, though, that 5 therapy failures (2.2%) reached an absorbed energy dose of >250 Gy.


Sign in / Sign up

Export Citation Format

Share Document