Hierarchical structured as-cast CrFeNiMn0.5Cu0.5 high entropy alloy with excellent tensile strength/ductility properties

2022 ◽  
Vol 210 ◽  
pp. 114473
Author(s):  
Sang Hun Shim ◽  
Hesam Pouraliakbar ◽  
Sun Ig Hong
2021 ◽  
Vol 28 (3) ◽  
pp. 221-226
Author(s):  
Namhyuk Seo ◽  
Junhyub Jeon ◽  
Gwanghun Kim ◽  
Jungbin Park ◽  
Seung Bae Son ◽  
...  

Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 833 ◽  
Author(s):  
Li ◽  
Qiu ◽  
Guo ◽  
Liu ◽  
Zhou ◽  
...  

Precipitation strengthening is an effective approach to strengthen high-entropy alloys (HEAs) with a simple face-center-cubic (FCC) structure. In this work, CoCrFeNiMo0.2 HEAs were prepared by powder metallurgy, followed by cool rolling and subsequent heat-treatment at different temperatures. The effects of cold working and annealing on microstructure and mechanical properties have been investigated. Results show the fine and dispersed (Cr, Mo)-rich σ phase with a topologically close-packed structure precipitated in the FCC matrix after the prior cold deformation process, which enhanced the mechanical property of the CoCrFeNiMo0.2 alloy. The HEA annealed at 600 °C for 48 h had a tensile strength of 1.9 GPa but an elongation which decreased to 8%. The HEA annealed at 800 °C for 12 h exhibited a tensile strength of 1.2 GPa and an elongation of 31%. These outstanding mechanical properties can be attributed to precipitation strengthening and fine-grain strengthening.


Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 389 ◽  
Author(s):  
Hanwen Zhang ◽  
Peizhi Liu ◽  
Jinxiong Hou ◽  
Junwei Qiao ◽  
Yucheng Wu

The mechanical behavior of a partially recrystallized fcc-CoCrFeNiTi0.2 high entropy alloys (HEA) is investigated. Temporal evolutions of the morphology, size, and volume fraction of the nanoscaled L12-(Ni,Co)3Ti precipitates at 800 °C with various aging time were quantitatively evaluated. The ultimate tensile strength can be greatly improved to ~1200 MPa, accompanied with a tensile elongation of ~20% after precipitation. The temporal exponents for the average size and number density of precipitates reasonably conform the predictions by the PV model. A composite model was proposed to describe the plastic strain of the current HEA. As a consequence, the tensile strength and tensile elongation are well predicted, which is in accord with the experimental results. The present experiment provides a theoretical reference for the strengthening of partially recrystallized single-phase HEAs in the future.


2020 ◽  
Author(s):  
Peyman Asghari-Rad ◽  
Praveen Sathiyamoorthi ◽  
Nhung Thi-Cam Nguyen ◽  
Alireza Zargaran ◽  
Taek Soo Kim ◽  
...  

JOM ◽  
2015 ◽  
Vol 67 (10) ◽  
pp. 2271-2277 ◽  
Author(s):  
H. M. Daoud ◽  
A. M. Manzoni ◽  
N. Wanderka ◽  
U. Glatzel

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 230
Author(s):  
Mekala Chinababu ◽  
Nandivelegu Naga Krishna ◽  
Katakam Sivaprasad ◽  
Konda Gokuldoss Prashanth ◽  
Eluri Bhaskara Rao

Aluminum matrix composites reinforced by CoCrFeMnNi high entropy alloy (HEA) particulates were fabricated using the stir casting process. The as-cast specimens were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The results indicated that flake-like silicon particles and HEA particles were distributed uniformly in the aluminum matrix. TEM micrographs revealed the presence of both the matrix and reinforcement phases, and no intermetallic phases were formed at the interface of the matrix and reinforcement phases. The mechanical properties of hardness and tensile strength increased with an increase in the HEA content. The Al 6063–5 wt.% HEA composite had a ultimate tensile strength (UTS) of approximately 197 MPa with a reasonable ductility (around 4.05%). The LM25–5 wt.% HEA composite had a UTS of approximately 195 Mpa. However, the percent elongation decreased to roughly 3.80%. When the reinforcement content increased to 10 wt.% in the LM25 composite, the UTS reached 210 MPpa, and the elongation was confined to roughly 3.40%. The fracture morphology changed from dimple structures to cleavage planes on the fracture surface with HEA weight percentage enhancement. The LM25 alloy reinforced with HEA particles showed enhanced mechanical strength without a significant loss of ductility; this composite may find application in marine and ship building industries.


2021 ◽  
Vol 190 ◽  
pp. 69-74 ◽  
Author(s):  
Peyman Asghari-Rad ◽  
Praveen Sathiyamoorthi ◽  
Nhung Thi-Cam Nguyen ◽  
Alireza Zargaran ◽  
Taek Soo Kim ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 408
Author(s):  
Huizhong Li ◽  
He Lin ◽  
Xiaopeng Liang ◽  
Weiwei He ◽  
Bin Liu ◽  
...  

In this work, an in-situ CoCrFeNi-M6Cp high entropy-alloy (HEA) based hardmetal with a composition of Co25Cr21Fe18Ni23Mo7Nb3WC2 was fabricated by the powder metallurgy (PM) method. Microstructures and mechanical properties of this HEA were characterized and analyzed. The results exhibit that this HEA possesses a two-phase microstructure consisting of the face-centered cubic (FCC) matrix phase and the carbide M6C phase. This HEA has an average grain size of 2.2 μm, and the mean size and volume fraction of carbide particles are 1.2 μm and 20%. The tensile tests show that the alloy has a yield strength of 573 MPa, ultimate tensile strength of 895 MPa and elongation of 5.5% at room temperature. The contributions from different strengthening mechanisms in this HEA were calculated. The grain boundary strengthening is the dominant strengthening mechanism, and the carbide particles are significant for the further enhancement of yield strength by the dislocation strengthening and Orowan strengthening. In addition, with increasing temperatures from 600 °C to 900 °C, the HEA shows a reduced yield strength (YS) from 473 MPa to 142 MPa, a decreased ultimate tensile strength (UTS) from 741 MPa to 165 MPa and an enhanced elongation from 10.5% to 31%.


Sign in / Sign up

Export Citation Format

Share Document