Carboxyl appended polymerized seed composite with controlled structural properties for enhanced heavy metal capture

Author(s):  
Sushmita Mahour ◽  
Sudhir Kumar Verma ◽  
Jyoti Kumar Arora ◽  
Shalini Srivastava
1992 ◽  
Vol 26 (9-11) ◽  
pp. 2149-2152 ◽  
Author(s):  
A. Grappelli ◽  
L. Campanella ◽  
E. Cardarelli ◽  
F. Mazzei ◽  
M. Cordatore ◽  
...  

Experiments on the real possibility of employing microorganisms to capture inorganic polluting substances, mainly heavy metals from urban and industrial wastes, are running using bacteria biomass. Many strains of Arthrobacter spp., gram-negative bacteria, diffused in the soil also inacondition of environmental stresses, have been proved to be particulary effective in heavy metal capture (Cd, Cr, Pb, Cu, Zn). The active and passive processes in accumulation of metals by bacteria were studied. Our experiments have been done on fluid biomass and on a membrane both for practical use and for an easy recovery.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1732
Author(s):  
Yuanyuan Yu ◽  
Yongjun Sun ◽  
Jun Zhou ◽  
Aowen Chen ◽  
Kinjal J. Shah

In this study, a high-efficiency magnetic heavy metal flocculant MF@AA was prepared based on carboxymethyl chitosan and magnetic Fe3O4. It was characterized by SEM, FTIR, XPS, XRD and VSM, and the Cu(II) removal rate was used as the evaluation basis for the preparation process. The effects of AMPS content, total monomer concentration, photoinitiator concentration and reaction time on the performance of MF@AA flocculation to remove Cu(II) were studied. The characterization results show that MF@AA has been successfully prepared and exhibits good magnetic induction characteristics. The synthesis results show that under the conditions of 10% AMPS content, 35% total monomer concentration, 0.04% photoinitiator concentration, and 1.5 h reaction time, the best yield of MF@AA is 77.69%. The best removal rate is 87.65%. In addition, the response surface optimization of the synthesis process of MF@AA was performed. The optimal synthesis ratio was finally determined as iron content 6.5%, CMFS: 29.5%, AM: 53.9%, AMPS: 10.1%. High-efficiency magnetic heavy metal flocculant MF@AA shows excellent flocculation performance in removing Cu(II). This research provides guidance and ideas for the development of efficient and low-cost flocculation technology to remove Cu(II) in wastewater.


2008 ◽  
Vol 42 (14) ◽  
pp. 5247-5253 ◽  
Author(s):  
Houng Li ◽  
Allen P. Davis
Keyword(s):  

2011 ◽  
Vol 356-360 ◽  
pp. 1590-1596 ◽  
Author(s):  
Xin Ye Wang ◽  
Ya Ji Huang ◽  
Zhao Ping Zhong ◽  
Yong Xing Wang ◽  
Liang Liang Xu

Heavy metal capture experiments were carried out in a tube furnace to investigate the effect of different sorbents and Si-Al ratios on the capture of Zn, Cu, Pb, Cd and Cr during simulated MSW incineration. The incineration bottom ash was digested by aqua regia and HCl/HNO3/HF, then determined by ICP-AES. Experimental results indicate that HCl/HNO3/HF is more suitable for the digestion of incineration bottom ash than aqua regia; the volatilization capacities of the five metals during simulated MSW incineration at 1000°C follow the sequence of Pb > Cd > Cu > Cr > Zn; zeolite and limestone have a certain efficiency to capture Zn and Cr while kaolinite has no efficiency to capture all the five metals; the addition of kaolinite and zeolite can prevent the glass and brick powder from melting which can cause the package of heavy metals, but the addition of zeolite can promote Zn and Cr to form silicate, aluminate and aluminosilicate; the mixture of SiO2and Al2O3is in favor of the adsorption of Cd and Cr, but against the adsorption of Pb and Cu compared with single SiO2or Al2O3.


2016 ◽  
Vol 56 (11) ◽  
pp. 1203-1211 ◽  
Author(s):  
Gabriel Russo ◽  
Diego Libkind ◽  
María Rosa Giraudo ◽  
Osvaldo Daniel Delgado
Keyword(s):  

Author(s):  
Jing Wang ◽  
Tianshu Zhang ◽  
Kangxuan Xia ◽  
Chuanhui Huang ◽  
Lizhi Liu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document