Simultaneous removal of aniline and antimony (Sb(V)) from textile wastewater using amidoxime-PAN/PLA nanofiber microsphere supported TiO2

Author(s):  
Yonghui Tu ◽  
Long-Fei Ren ◽  
Jiahui Shao ◽  
Yiliang He
Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 922
Author(s):  
Tippawan Singhopon ◽  
Kenta Shinoda ◽  
Suphatchai Rujakom ◽  
Futaba Kazama

Textile wastewater (TW) contains toxic pollutants that pose both environmental and human health risks. Reportedly, some of these pollutants, including NO3-, NO2- and reactive black 5 (RB-5) dye, can be removed via hydrogen-based denitrification (HD); however, it is still unclear how different factors affect their simultaneous removal. This study aimed to investigate the effect of H2 flow rate, the sparging cycle of air and H2, and initial dye concentration on the TW treatment process. Thus, two reactors, an anaerobic HD reactor and a combined aerobic/anaerobic HD reactor, were used to investigate the treatment performance. The results obtained that increasing the H2 flow rate in the anaerobic HD reactor increased nitrogen removal and decolorization removal rates. Further, increasing the time for anaerobic treatment significantly enhanced the pollutant removal rate in the combined reactor. Furthermore, an increase in initial dye concentration resulted in lower nitrogen removal rates. Additionally, some of the dye was decolorized during the HD process via bacterial degradation, and increasing the initial dye concentration resulted in a decrease in the decolorization rate. Bacterial communities, including Xanthomonadaceae, Rhodocyclaceae, and Thauera spp., are presented as the microbial species that play a key role in the mechanisms related to nitrogen removal and RB-5 decolorization under both HD conditions. However, both reactors showed similar treatment efficiencies; hence, based on these results, the use of a combined aerobic/anaerobic HD system should be used to reduce organic/inorganic pollutant contents in real textile wastewater before discharging is recommended.


2011 ◽  
Vol 10 (3) ◽  
pp. 341-347 ◽  
Author(s):  
Maria Harja ◽  
Marinela Barbuta ◽  
Lacramioara Rusu ◽  
Corneliu Munteanu ◽  
Gabriela Buema ◽  
...  

2013 ◽  
Vol 8 (3-4) ◽  
pp. 469-478 ◽  
Author(s):  
Sandip S. Magdum ◽  
Gauri P. Minde ◽  
Upendra S. Adhyapak ◽  
V. Kalyanraman

The aim of this work was to optimize the biodegradation of polyvinyl alcohol (PVA) containing actual textile wastewater for a sustainable treatment solution. The isolated microbial consortia of effective PVA degrader namely Candida Sp. and Pseudomonas Sp., which were responsible for symbiotic degradation of chemical oxidation demand (COD) and PVA from desizing wastewater. In the process optimization, the maximum aeration was essential to achieve a high degradation rate, where as stirring enhances further degradation and foam control. Batch experiments concluded with the need of 16 lpm/l and 150 rpm of air and stirring speed respectively for high rate of COD and PVA degradation. Optimized process leads to 2 days of hydraulic retention time (HRT) with 85–90% PVA degradation. Continuous study also confirmed above treatment process optimization with 85.02% of COD and 90.3% of PVA degradation of effluent with 2 days HRT. This study gives environment friendly and cost effective solution for PVA containing textile wastewater treatment.


1999 ◽  
Vol 40 (8) ◽  
pp. 229-236 ◽  
Author(s):  
F. Fdz-Polanco ◽  
M. D. Hidalgo ◽  
M. Fdz-Polanco ◽  
P. A. García Encina

In the last decade Polyethylene Terephthalate (PET) production is growing. The wastewater of the “Catalana de Polimers” factory in Barcelona (Spain) has two main streams of similar flow rate, esterification (COD=30,000 mg/l) and textile (COD=4000 mg/l). In order to assess the anaerobic treatment viability, discontinuous and continuous experiments were carried out. Discontinuous biodegradability tests indicated that anaerobic biodegradability was 90 and 75% for esterification and textile wastewater. The textile stream revealed some tendency to foam formation and inhibitory effects. Nutrients, micronutrients and alkali limitations and dosage were determined. A continuous lab-scale UASB reactor was able to treat a mixture of 50% (v) esterification/textile wastewater with stable behaviour at organic loading rate larger than 12 g COD/l.d (0.3 g COD/g VSS.d) with COD removal efficiency greater than 90%. The start-up period was very short and the recuperation after overloading accidents was quite fast, in spite of the wash-out of solids. From the laboratory information an industrial treatment plant was designed and built, during the start-up period COD removal efficiencies larger than 90% and organic loading rate of 0.6 kg COD/kg VSS.d (5 kg COD/m3.d) have been reached.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 99-105 ◽  
Author(s):  
A. Lopez ◽  
G. Ricco ◽  
R. Ciannarella ◽  
A. Rozzi ◽  
A. C. Di Pinto ◽  
...  

Among the activities appointed by the EC research-project “Integrated water recycling and emission abatement in the textile industry” (Contract: ENV4-CT95-0064), the effectiveness of ozone for improving the biotreatability of recalcitrant effluents as well as for removing from them toxic and/or inhibitory pollutants has been evaluated at lab-scale. Real membrane concentrates (pH=7.9; TOC=190 ppm; CDO=595 ppm; BOD5=0 ppm; Conductivity=5,000 μS/cm; Microtox-EC20=34%) produced at Bulgarograsso (Italy) Wastewater Treatment Plant by nanofiltering biologically treated secondary textile effluents, have been treated with ozonated air (O3conc.=12 ppm) over 120 min. The results have indicated that during ozonation, BOD5 increases from 0 to 75 ppm, whereas COD and TOC both decrease by about 50% and 30 % respectively. As for potentially toxic and/or inhibitory pollutants such as dyes, nonionic surfactants and halogenated organics, all measured as sum parameters, removals higher than 90% were achieved as confirmed by the complete disappearance of acute toxicity in the treated streams. The only ozonation byproducts searched for and found were aldehydes whose total amount continuously increased in the first hour from 1.2 up to 11.8 ppm. Among them, formaldehyde, acetaldehyde, glyoxal, propionaldehyde, and butyraldehyde were identified by HPLC.


Sign in / Sign up

Export Citation Format

Share Document