Comparison between a single unit bioreactor and an integrated bioreactor for nutrient removal from domestic wastewater

2021 ◽  
Vol 48 ◽  
pp. 101620
Author(s):  
Prangya Ranjan Rout ◽  
Rajesh Roshan Dash ◽  
Puspendu Bhunia ◽  
Eunseok Lee ◽  
Jaeho Bae
2015 ◽  
Vol 752-753 ◽  
pp. 232-237
Author(s):  
Rafidah binti Hamdan ◽  
Izzati Izwani Ibrahim ◽  
Ain Nabila Abdul Talib

Nitrogen is a naturally occurring element that is essential for growth and reproduction in both plants and animals. Excessive concentrations in the water body can cause excessive growth of algae and other plants, leading to accelerate eutrophication of lakes, and occasional depletion of dissolved oxygen. To remove nitrogen conventionally from domestic wastewater requires a high cost technology due to consumption of chemicals, high operational and maintenance cost. Therefore, an alternative low cost treatment technology particularly for nutrient removal including nitrogen removal system has been developed to improve the final effluent quality that is an aerated rock filter system. However, the optimization study under warm climate has not yet been developed. Hence, the present study was carried out to investigate the removal of ammonia nitrogen (AN) from domestic wastewater through nitrification process using a lab-scale vertical aerated limestone filter. Domestic wastewater sample used in this study was collected from Taman Bukit Perdana Wastewater Treatment Plant (WWTP), Batu Pahat, Johor owned by IWK. The experiment has been carried out for 10 weeks. The influent and effluent of the vertical aerated limestone filter system have been sampled and analyzed on biweekly basis for selected parameters including AN, Total Kjedhal Nitrogen (TKN), pH, alkalinity, temperature and dissolved oxygen to monitor the effectiveness of the filter. Results from this study show that nitrification process has took place within the aerated limestone filter as the results from laboratory experiments show that AN in wastewater was oxidized to nitrate and efficiently removed as the removal of AN was ranged from 85 % to 92 % and the removal percentage of TKN was ranged from 83.52 % - 91.67 %. The temperature was in the average of 26.3oC±0.75, pH value average of , DO was from 6.64 mg/L to 7.75 mg/L , and the alkalinity was from 15 to 110 mg / l as CaCO3 . Therefore, from this study it can be concluded that aerated rock filter system has high potential in removing AN and TKN. It is also able to produce a good final effluent quality which is comply with the effluent requirement for nutrient removal in wastewater under the Environmental Quality Act (Sewage) Regulations, 2009 that is safe to be released to the water body.


2020 ◽  
Vol 19 ◽  
pp. 100891 ◽  
Author(s):  
Omar Hamed Jehawi ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Setyo Budi Kurniawan ◽  
Nur ‘Izzati Ismail ◽  
Mushrifah Idris ◽  
...  

2003 ◽  
Vol 47 (11) ◽  
pp. 9-15 ◽  
Author(s):  
T. McCue ◽  
R. Shah ◽  
I. Vassiliev ◽  
Y.-H. Liu ◽  
F.G. Eremektar ◽  
...  

The objective of this NSF sponsored research was to provide a controlled comparison of identical continuous flow biological nutrient removal (BNR) processes both with and without prefermentation in order to provide a stronger, more quantitative, technical basis for design engineers to determine the potential benefits of prefermentation to EBPR in treating domestic wastewater. Specifically, this paper focused upon the potential impacts of primary influent prefermentation upon BNR processes treating septic domestic wastewater. This study can be divided into two distinct phases - an initial bench-scale phase which treated septic P-limited (TCOD:TP>40) wastewater and a subsequent pilot-scale phase which treated septic COD-limited (TCOD:TP<40) wastewater. The following conclusions can be drawn from the results obtained to date.•Prefermentation increased both RBCOD, SBCOD and VFA content of septic domestic wastewater.•Prefermentation resulted in increased biological P removal for a highly septic, non-P limited (TCOD:TP<40:1) wastewater. However, in septic, P-limited (TCOD:TP>40:1) wastewater, changes in net P removal due to prefermentation were suppressed by limited P availability, even though P release and PHA content were affected.•Prefermentation increased specific anoxic denitrification rates for both COD and P-limited wastewaters, and in the pilot (COD-limited) study also coincided with greater system N removal.


2011 ◽  
Vol 63 (8) ◽  
pp. 1547-1556 ◽  
Author(s):  
J. S. Ventura ◽  
S. Seo ◽  
I. Chung ◽  
I. Yeom ◽  
H. Kim ◽  
...  

In this study, a pilot scale anaerobic-anoxic-oxic (A2O) process with submerged membrane (MBR) in the oxic tank was coupled with thermophilic aerobic digestion (TAD) reactor and was operated for longer than 600 days to treat real domestic wastewater. Regardless of the varying conditions of the system, the A2O-MBR-TAD process removed MLSS, TCOD, BOD, TN, TP, and E. coli about 99%, 96%, 96%, 70%, 83%, and 99%, respectively. The additional TP removal of the system was due to the precipitating agent directly added in the oxic reactor, without which TP removal was about 56%. In the TAD reactor, receiving MLSS from the oxic tank (MBR), about 25% of TSS and VSS were solubilized during 2 days of retention. The effluent of the TAD reactor was recycled into the anoxic tank of A2O-MBR to provide organic carbon for denitrification and cryptic growth. By controlling the flowrate of wasting stream from the MBR, sludge production decreased to almost zero. From these results, it was concluded that the A2O-MBR-TAD process could be a reliable option for excellent effluent quality and near zero-sludge production.


Sign in / Sign up

Export Citation Format

Share Document