scholarly journals The performance of solar PV modules with two glass types after 11 years of outdoor exposure under the mediterranean climatic conditions

2022 ◽  
Vol 49 ◽  
pp. 101771
Author(s):  
N. Belhaouas ◽  
F. Mehareb ◽  
E. Kouadri-Boudjelthia ◽  
H. Assem ◽  
S. Bensalem ◽  
...  

This paper presents study, identification and evaluation of causes and impact of various degradation modes and environmental conditions on performance of a utility scale grid connected solar PV plant located in remote location in India. Degradation of solar PV modules results in considerable loss in energy yield of overall estimated plant generation. The research includes degradation analysis of 25 MW Roha Dyechem amorphous Si solar PV plant, Charanka, Patan, Gujarat under varying climatic conditions. Some of the well qualified modules were found to degrade in outdoor exposure for more than 7 years. Glass breakage, hot spots, backsheet puncture, micro-delamination, corrosion of cell edges, snail trails, Digital Process Control Board (DPCB) failure, moisture ingression, soiling losses etc. were among the main faults observed in fielded PV modules. A comparative analysis is presented between the simulated, computed and practically measured and recorded field data for drawing important conclusions.


2014 ◽  
Vol 472 ◽  
pp. 206-210
Author(s):  
S. Basu Pal ◽  
S. Bijali ◽  
S.R. Bhadra Chaudhuri ◽  
D. Mukherjee

Linear Interpolation methods for predicting the I-V characteristics for c-Si PV modules in outdoor conditions have been used by various groups of researchers. This is essential for minimizing the uncertainty in predicting essential photovoltaic parameters of interpolated I-V characteristics. A near optimum value of empirical co-efficient used in Tsunos model has been investigated under typical Eastern Indian Climatic conditions.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


Smart Science ◽  
2021 ◽  
pp. 1-12
Author(s):  
Mohd Tariq ◽  
Mohsin Karim Ansari ◽  
Fazlur Rahman ◽  
Md Atiqur Rahman ◽  
Imtiaz Ashraf
Keyword(s):  
Solar Pv ◽  

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Helder Fraga ◽  
Marco Moriondo ◽  
Luisa Leolini ◽  
João A. Santos

The olive tree (Olea europaea L.) is an ancient traditional crop in the Mediterranean Basin. In the Mediterranean region, traditional olive orchards are distinguishable by their prevailing climatic conditions. Olive trees are indeed considered one of the most suitable and best-adapted species to the Mediterranean-type climate. However, new challenges are predicted to arise from climate change, threatening this traditional crop. The Mediterranean Basin is considered a climate change “hotspot,” as future projections hint at considerable warming and drying trends. Changes in olive tree suitability have already been reported over the last few decades. In this context, climate change may become particularly challenging for olive growers. The growing evidence for significant climate change in the upcoming decades urges adaptation measures to be taken. To effectively cope with the projected changes, both short and long-term adaptation strategies must be timely planned by the sector stakeholders and decision-makers to adapt for a warmer and dryer future. The current manuscript is devoted to illustrating the main impacts of climate change on olive tree cultivation in the Mediterranean Basin, by reviewing the most recent studies on this subject. Additionally, an analysis of possible adaptation strategies against the potentially negative impacts of climate change was also performed.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4292
Author(s):  
Horng-Horng Lin ◽  
Harshad Kumar Dandage ◽  
Keh-Moh Lin ◽  
You-Teh Lin ◽  
Yeou-Jiunn Chen

Solar cells may possess defects during the manufacturing process in photovoltaic (PV) industries. To precisely evaluate the effectiveness of solar PV modules, manufacturing defects are required to be identified. Conventional defect inspection in industries mainly depends on manual defect inspection by highly skilled inspectors, which may still give inconsistent, subjective identification results. In order to automatize the visual defect inspection process, an automatic cell segmentation technique and a convolutional neural network (CNN)-based defect detection system with pseudo-colorization of defects is designed in this paper. High-resolution Electroluminescence (EL) images of single-crystalline silicon (sc-Si) solar PV modules are used in our study for the detection of defects and their quality inspection. Firstly, an automatic cell segmentation methodology is developed to extract cells from an EL image. Secondly, defect detection can be actualized by CNN-based defect detector and can be visualized with pseudo-colors. We used contour tracing to accurately localize the panel region and a probabilistic Hough transform to identify gridlines and busbars on the extracted panel region for cell segmentation. A cell-based defect identification system was developed using state-of-the-art deep learning in CNNs. The detected defects are imposed with pseudo-colors for enhancing defect visualization using K-means clustering. Our automatic cell segmentation methodology can segment cells from an EL image in about 2.71 s. The average segmentation errors along the x-direction and y-direction are only 1.6 pixels and 1.4 pixels, respectively. The defect detection approach on segmented cells achieves 99.8% accuracy. Along with defect detection, the defect regions on a cell are furnished with pseudo-colors to enhance the visualization.


2021 ◽  
pp. 1-12
Author(s):  
Zalmen Henkin

Abstract Encroachment of woody plants into grasslands and subsequent brush management are among the most prominent changes occurring in arid and semiarid ecosystems over the past century. The reduced number of farms, the abandonment of marginal land and the decline of traditional farming practices have led to encroachment of the woody and shrubby components into grasslands. This phenomenon, specifically in the Mediterranean region, which is followed by a reduction in herbage production, biodiversity and increased fire risk, is generally considered an undesirable process. Sarcopoterium spinosum has had great success in the eastern Mediterranean as a colonizer and dominant bush species on a wide variety of sites and climatic conditions. In the Mediterranean dehesa, the high magnitude and intensity of shrub encroachment effects on pastures and on tree production were shown to be dependent on temporal variation. Accordingly, there are attempts to transform shrublands into grassland-woodland matrices by using different techniques. The main management interventions that are commonly used include grazing, woodcutting, shrub control with herbicides or by mechanical means, amelioration of plant mineral deficits in the soil, and fire. However, the effects of these various treatments on the shrubs under diverse environmental conditions were found to be largely context-specific. As such, the most efficient option for suppressing encroachment of shrubs is combining different interventions. Appropriate management of grazing, periodic control of the shrub component, and occasional soil nutrient amelioration can lead to the development of attractive open woodland with a productive herbaceous understory that provides a wider range of ecological services.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Diego Torres Lobera ◽  
Anssi Mäki ◽  
Juha Huusari ◽  
Kari Lappalainen ◽  
Teuvo Suntio ◽  
...  

A grid connected solar photovoltaic (PV) research facility equipped with comprehensive climatic and electric measuring systems has been designed and built in the Department of Electrical Engineering of the Tampere University of Technology (TUT). The climatic measuring system is composed of an accurate weather station, solar radiation measurements, and a mesh of irradiance and PV module temperature measurements located throughout the solar PV facility. Furthermore, electrical measurements can be taken from single PV modules and strings of modules synchronized with the climatic data. All measured parameters are sampled continuously at 10 Hz with a data-acquisition system based on swappable I/O card technology and stored in a database for later analysis. The used sampling frequency was defined by thorough analyses of the PV system time dependence. Climatic and electrical measurements of the first operation year of the research facility are analyzed in this paper. Moreover, operation of PV systems under partial shading conditions caused by snow and building structures is studied by means of the measured current and power characteristics of PV modules and strings.


Sign in / Sign up

Export Citation Format

Share Document