scholarly journals Integrating more renewable electricity into the power system may increase carbon emissions

2022 ◽  
Vol 49 ◽  
pp. 101796
Author(s):  
Guangzhi Yin ◽  
Baixue Wang ◽  
Maosheng Duan ◽  
Yi Kuang
2018 ◽  
Vol 8 (9) ◽  
pp. 1453 ◽  
Author(s):  
Huanan Liu ◽  
Dezhi Li ◽  
Yuting Liu ◽  
Mingyu Dong ◽  
Xiangnan Liu ◽  
...  

With the rapid development of industry, more fossil energy is consumed to generate electricity, which increases carbon emissions and aggravates the burden of environmental protection. To reduce carbon emissions, traditional centralized power generation networks are transforming into distributed renewable generation systems. However, the deployment of distributed generation systems can affect power system economy and stability. In this paper, under different time scales, system economy, stability, carbon emissions, and renewable energy fluctuation are comprehensively considered to optimize battery and super-capacitor installation capacity for an off-grid power system. After that, based on the genetic algorithm, this paper shows the optimal system operation strategy under the condition of the theoretical best energy storage capacity. Finally, the theoretical best capacity is tested under different renewable energy volatility rates. The simulation results show that by properly sizing the storage system’s capacity, although the average daily costs of the system can increase by 10%, the system’s carbon emissions also reduce by 42%. Additionally, the system peak valley gap reduces by 23.3%, and the renewable energy output’s fluctuation range and system loss of load probability are successfully limited in an allowable range. Lastly, it has less influence on the theoretical best energy storage capacity if the renewable energy volatility rate can be limited to within 10%.


Energies ◽  
2015 ◽  
Vol 8 (9) ◽  
pp. 9087-9106 ◽  
Author(s):  
Jun Yang ◽  
Xin Feng ◽  
Yufei Tang ◽  
Jun Yan ◽  
Haibo He ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3934 ◽  
Author(s):  
Marco Raugei ◽  
Alessio Peluso ◽  
Enrica Leccisi ◽  
Vasilis Fthenakis

This paper presents a detailed life-cycle assessment of the greenhouse gas emissions, cumulative demand for total and non-renewable primary energy, and energy return on investment (EROI) for the domestic electricity grid mix in the U.S. state of California, using hourly historical data for 2018, and future projections of increased solar photovoltaic (PV) installed capacity with lithium-ion battery energy storage, so as to achieve 80% net renewable electricity generation in 2030, while ensuring the hourly matching of the supply and demand profiles at all times. Specifically—in line with California’s plans that aim to increase the renewable energy share into the electric grid—in this study, PV installed capacity is assumed to reach 43.7 GW in 2030, resulting of 52% of the 2030 domestic electricity generation. In the modelled 2030 scenario, single-cycle gas turbines and nuclear plants are completely phased out, while combined-cycle gas turbine output is reduced by 30% compared to 2018. Results indicate that 25% of renewable electricity ends up being routed into storage, while 2.8% is curtailed. Results also show that such energy transition strategy would be effective at curbing California’s domestic electricity grid mix carbon emissions by 50%, and reducing demand for non-renewable primary energy by 66%, while also achieving a 10% increase in overall EROI (in terms of electricity output per unit of investment).


Sign in / Sign up

Export Citation Format

Share Document