Energy, exergy, exergoeconomic, and exergoenvironmental analysis of an innovative solar-geothermal-gas driven polygeneration system for combined power, hydrogen, hot water, and freshwater production

2022 ◽  
Vol 51 ◽  
pp. 101861
Author(s):  
M.H. Khoshgoftar Manesh ◽  
S.A. Mousavi Rabeti ◽  
M. Nourpour ◽  
Z. Said
Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4603
Author(s):  
Francesca Ceglia ◽  
Adriano Macaluso ◽  
Elisa Marrasso ◽  
Carlo Roselli ◽  
Laura Vanoli

This paper presents a thermodynamic, economic, and environmental analysis of a renewable polygeneration system connected to a district heating and cooling network. The system, fed by geothermal energy, provides thermal energy for heating and cooling, and domestic hot water for a residential district located in the metropolitan city of Naples (South of Italy). The produced electricity is partly used for auxiliaries of the thermal district and partly sold to the power grid. A calibration control strategy was implemented by considering manufacturer data matching the appropriate operating temperature levels in each component. The cooling and thermal demands of the connected users were calculated using suitable building dynamic simulation models. An energy network dedicated to heating and cooling loads was designed and simulated by considering the variable ground temperature throughout the year, as well as the accurate heat transfer coefficients and pressure losses of the network pipes. The results were based on a 1-year dynamic simulation and were analyzed on a daily, monthly, and yearly basis. The performance was evaluated by means of the main economic and environmental aspects. Two parametric analyses were performed by varying geothermal well depth, to consider the uncertainty in the geofluid temperature as a function of the depth, and by varying the time of operation of the district heating and cooling network. Additionally, the economic analysis was performed by considering two different scenarios with and without feed-in tariffs. Based on the assumptions made, the system is economically feasible only if feed-in tariffs are considered: the minimum Simple Pay Back period is 7.00 years, corresponding to a Discounted Pay Back period of 8.84 years, and the maximum Net Present Value is 6.11 M€, corresponding to a Profit Index of 77.9% and a maximum Internal Rate of Return of 13.0%. The system allows avoiding exploitation of 27.2 GWh of primary energy yearly, corresponding to 5.49∙103 tons of CO2 avoided emissions. The increase of the time of the operation increases the economic profitability.


Polygeneration systems refers to highly efficiency integrated systems characterized by the simultaneously production of different services (electricity, heating, cooling, water, etc) by means of several technologies using fossil and/or renewable energy sources. In many cases it is difficult to promote polygeneration projects due to its complexity. This complexity mainly comes from the high energy integration of the technologies involved in polygeneration plants and the high variability in the energy demand in many applications in the building sector that makes the design and optimal operation of these systems quite complex. The result is that without a very careful design and operation of these plants the economic viability is in many cases not clear. In this paper is presented an economic, energetic and environmental analysis of a polygeneration system in Cerdanyola del Vallès (Spain) built in the framework of the Polycity project of the European Concerto Program. This polygeneration system comprises three high efficient natural gas cogeneration engines with a total power capacity of about 10 MW with advanced thermal cooling facilities including a single effect hot water driven chiller and a double effect chiller of 5 MW driven directly by the exhaust gases of the engines. This plant provides electricity, heating and cooling to a new Science and Technological Park in development including a Synchrotron Light Facility through a district heating and cooling network with a total length of more than 30 km. The operational data for the energy performance analysis was taken using the plant SCADA system and a monitoring system specific for the cooling units in order to study in detail its performance. The results show that the polygeneration plant is an efficient way to reduce the primary energy consumption and CO2 emissions although it is not yet at its full capacity


Sign in / Sign up

Export Citation Format

Share Document