Analyzing variability and decomposing electricity-generation emission factors for three U.S. states

2022 ◽  
Vol 51 ◽  
pp. 101986
Author(s):  
Zahra Ghaemi ◽  
Amanda D. Smith
2021 ◽  
Author(s):  
Zahra Ghaemi ◽  
Amanda D. Smith

Electricity generation emission factors (EGEF) quantify the relationship between an emitted pollutant and the amount of electricity generated. Quantifying the variability among calculated EGEF is important when EGEFs are used to inform decision-making for environmental sustainability.First, variabilities in EGEF due to variability in the amount of coal, natural gas, and petroleum emissions within the fuel mix are quantified for California, Texas, and New York in 2017. The results show a higher coefficient of variation for SO2 and NOx compared to CO2 EGEF.Next, changes in the EGEF over time are studied using decomposition analysis for California, Texas, and New York from 1990 to 2017. The results show that the main factor in reducing EGEF in California is the improvement in the generation efficiency of power plants; in Texas, it is the increase in the ratio of renewable to non-renewable electricity generation; and in New York, it is the change in the mix of fossil fuels that are consumed for electricity generation.Finally, the effect of variability of EGEF on environmental impact categories is analyzed. Eutrophication of air, eutrophication of water, and smog formation are subject to high uncertainty because SO2 and NOx EGEFs are used to quantify these impacts, whereas global warming potential has less uncertainty because it only uses CO2 EGEF.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5261
Author(s):  
Amir Shahin Kamjou ◽  
Carol J. Miller ◽  
Mahdi Rouholamini ◽  
Caisheng Wang

Electricity generation is tied to various environmental and social consequences. In prior studies, the environmental emissions associated with electricity generation were calculated using average emission factors (AEFs) whose use is different from the method of marginal emission factors (MEFs) in regard to the geographical redefinition and new policies applied to the US electricity grid in 2013. Moreover, the amount of emissions being released at a generation site depends on the technology of the generating units; it is important to take into account this factor as well. Thus, this paper provides comparisons between different historical and real-time approaches of estimating MEFs (i.e., CO2, SO2, and NOx) for the Midcontinent Independent System Operator (MISO) electricity region. The region under study is the same for all the scenarios, although the comparative time frames are different. The study is focused on the similarities observed in the data trends and system behaviors. We carry out different temporal comparisons whose results show the value of real-time approaches for estimating the MEFs for each location and at any time. These approaches can be extended to other regions to assist with proper investment and policy making, thereby increasing the grid efficiency, mitigating the environmental emissions, and clarifying the byproducts of energy consumption.


2009 ◽  
Vol 33 (1) ◽  
pp. 105-118 ◽  
Author(s):  
Christian Gordon ◽  
Alan Fung

In this research, seasonal greenhouse gas (GHG) emission factors were developed to realize the true CO2 reduction potential of a small scale renewable energy technology. From this data Time Dependent Valuation (TDV) emission factors and hourly emission factors were developed which provided upper and lower limits, respectively. The use of regionally specific climate-modeled factors, such as those identified, allowed for a better representation of the benefits associated with GHG reducing technologies, such as photovoltaic (PV)


BIOCELL ◽  
2018 ◽  
Vol 42 (1) ◽  
pp. 7-11 ◽  
Author(s):  
M. Moustafa ◽  
T. Taha ◽  
M. Elnouby ◽  
M.A. Abu-Saied Aied ◽  
A. Shati ◽  
...  

Author(s):  
Harshkumar Patel ◽  
Yogesh Patel

Now-a-days energy planners are aiming to increase the use of renewable energy sources and nuclear to meet the electricity generation. But till now coal-based power plants are the major source of electricity generation. Disadvantages of coal-based thermal power plants is disposal problem of fly ash and pond ash. It was earlier considered as a total waste and environmental hazard thus its use was limited, but now its useful properties have been known as raw material for various application in construction field. Fly ash from the thermal plants is available in large quantities in fine and coarse form. Fine fly ash is used in construction industry in some amount and coarse fly ash is subsequently disposed over land in slurry forms. In India around 180 MT fly is produced and only around 45% of that is being utilized in different sectors. Balance fly ash is being disposed over land. It needs one acre of land for ash disposal to produce 1MW electricity from coal. Fly ash and pond ash utilization helps to reduce the consumption of natural resources. The fly ash became available in coal based thermal power station in the year 1930 in USA. For its gainful utilization, scientist started research activities and in the year 1937, R.E. Davis and his associates at university of California published research details on use of fly ash in cement concrete. This research had laid foundation for its specification, testing & usages. This study reports the potential use of pond-ash and fly-ash as cement in concrete mixes. In this present study of concrete produced using fly ash, pond ash and OPC 53 grade will be carried. An attempt will be made to investigate characteristics of OPC concrete with combined fly ash and pond ash mixed concrete for Compressive Strength test, Split Tensile Strength test, Flexural Strength test and Durability tests. This paper deals with the review of literature for fly-ash and pond-ash as partial replacement of cement in concrete.


2018 ◽  
Vol 13 (Number 1) ◽  
pp. 55-67
Author(s):  
Shafini M. Shafie ◽  
Zakirah Othman ◽  
N Hami

Malaysia has an abundance of biomass resources that can be utilised for power generation. One of them is paddy residue. Paddy residue creates ahuge potential in the power generation sector. The consumption of paddy residue can help Malaysia become less dependent on conventional sources of energy, mitigate greenhouse gas(GHG) emission, offer positive feedback in the economic sector, and at the same time, provide thebest solution for waste management activities. The forecast datafor 20 years on electricity generation wasused to calculate the GHG emission and its saving when paddy residue is used for electricity generation. The government’scost saving was also identified when paddy residue substituted coal fuel in electricity generation.This paper can provide forecast information so that Malaysia is able to move forward to apply paddy residue as feedstock in energy supply. Hopefully, the data achieved can encourage stakeholder bodies in the implementation of paddy residue inelectricity generation since there is apositive impact towardscost and emission saving.


2006 ◽  
Author(s):  
C. Feigley ◽  
N. Schnaufer ◽  
T. Do ◽  
E. Lee ◽  
M. Venkatraman ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document