Reinforcement learning-assisted autoscaling mechanisms for serverless computing platforms

Author(s):  
Anastasios Zafeiropoulos ◽  
Eleni Fotopoulou ◽  
Nikos Filinis ◽  
Symeon Papavassiliou
2021 ◽  
Vol 11 (20) ◽  
pp. 9448
Author(s):  
Qiqi Wang ◽  
Hongjie Zhang ◽  
Cheng Qu ◽  
Yu Shen ◽  
Xiaohui Liu ◽  
...  

The job scheduler plays a vital role in high-performance computing platforms. It determines the execution order of the jobs and the allocation of resources, which in turn affect the resource utilization of the entire system. As the scale and complexity of HPC continue to grow, job scheduling is becoming increasingly important and difficult. Existing studies relied on user-specified or regression techniques to give fixed runtime prediction values and used the values in static heuristic scheduling algorithms. However, these approaches require very accurate runtime predictions to produce better results, and fixed heuristic scheduling strategies cannot adapt to changes in the workload. In this work, we propose RLSchert, a job scheduler based on deep reinforcement learning and remaining runtime prediction. Firstly, RLSchert estimates the state of the system by using a dynamic job remaining runtime predictor, thereby providing an accurate spatiotemporal view of the cluster status. Secondly, RLSchert learns the optimal policy to select or kill jobs according to the status through imitation learning and the proximal policy optimization algorithm. Extensive experiments on real-world job logs at the USTC Supercomputing Center showed that RLSchert is superior to static heuristic policies and outperforms the learning-based scheduler DeepRM. In addition, the dynamic predictor gives a more accurate remaining runtime prediction result, which is essential for most learning-based schedulers.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1812 ◽  
Author(s):  
Zheqi Yu ◽  
Pedro Machado ◽  
Adnan Zahid ◽  
Amir M. Abdulghani ◽  
Kia Dashtipour ◽  
...  

This paper suggests an optimisation approach in heterogeneous computing systems to balance energy power consumption and efficiency. The work proposes a power measurement utility for a reinforcement learning (PMU-RL) algorithm to dynamically adjust the resource utilisation of heterogeneous platforms in order to minimise power consumption. A reinforcement learning (RL) technique is applied to analyse and optimise the resource utilisation of field programmable gate array (FPGA) control state capabilities, which is built for a simulation environment with a Xilinx ZYNQ multi-processor systems-on-chip (MPSoC) board. In this study, the balance operation mode for improving power consumption and performance is established to dynamically change the programmable logic (PL) end work state. It is based on an RL algorithm that can quickly discover the optimization effect of PL on different workloads to improve energy efficiency. The results demonstrate a substantial reduction of 18% in energy consumption without affecting the application’s performance. Thus, the proposed PMU-RL technique has the potential to be considered for other heterogeneous computing platforms.


Decision ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 115-131 ◽  
Author(s):  
Helen Steingroever ◽  
Ruud Wetzels ◽  
Eric-Jan Wagenmakers

Sign in / Sign up

Export Citation Format

Share Document