Label-free and highly sensitive nanoplasmonic biosensor-based autophagy flux sensing for clinical application

2022 ◽  
Vol 350 ◽  
pp. 130880
Author(s):  
Young Jae Choi ◽  
Jong Uk Lee ◽  
Sang Jun Sim
Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 147
Author(s):  
Kristina A. Malsagova ◽  
Tatyana O. Pleshakova ◽  
Vladimir P. Popov ◽  
Igor N. Kupriyanov ◽  
Rafael A. Galiullin ◽  
...  

Gas-phase etching and optical lithography were employed for the fabrication of a silicon nanoribbon chip (Si-NR chip). The quality of the so-fabricated silicon nanoribbons (Si-NRs) was monitored by optical Raman scattering spectroscopy. It was demonstrated that the structures of the Si-NRs were virtually defect-free, meaning they could be used for highly sensitive detection of biological macromolecules. The Si-NR chips were then used for the highly sensitive nanoelectronics detection of DNA oligonucleotides (oDNAs), which represent synthetic analogs of 106a-5p microRNA (miR-106a-5p), associated with the development of autism spectrum disorders in children. The specificity of the analysis was attained by the sensitization of the Si-NR chip sur-face by covalent immobilization of oDNA probes, whose nucleotide sequence was complementary to the known sequence of miR-106a-5p. The use of the Si-NR chip was demonstrated to al-low for the rapid label-free real-time detection of oDNA at ultra-low (~10−17 M) concentrations.


2017 ◽  
Vol 35 (22) ◽  
pp. 4851-4858 ◽  
Author(s):  
Mohamed Farhat O. Hameed ◽  
Ahmed Samy Saadeldin ◽  
Essam M. A. Elkaramany ◽  
Salah S. A. Obayya

2014 ◽  
Vol 14 ◽  
pp. 85-92 ◽  
Author(s):  
Deep Kishore Parsediya ◽  
Jawar Singh ◽  
Pavan Kumar Kankar
Keyword(s):  

2014 ◽  
Vol 50 (24) ◽  
pp. 3211-3213 ◽  
Author(s):  
Mengli Yang ◽  
Ying Chen ◽  
Yun Xiang ◽  
Ruo Yuan ◽  
Yaqin Chai

Highly sensitive and label-free detection of thrombin is achieved via a target-induced DNA structure switching strategy and Exo III-assisted recycling amplification.


RSC Advances ◽  
2014 ◽  
Vol 4 (51) ◽  
pp. 27091-27097 ◽  
Author(s):  
Qingwang Xue ◽  
Yanqin Lv ◽  
Yuanfu Zhang ◽  
Shuling Xu ◽  
Qiaoli Yue ◽  
...  

A novel label-free amplified fluorescent sensing scheme based on target-responsive dumbbell probe-mediated rolling circle amplification (D-RCA) has been developed for sensitive and selective detection of mercuric ions.


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91077-91082 ◽  
Author(s):  
Jia Ge ◽  
Zhen-Zhen Dong ◽  
Lin Zhang ◽  
Qi-Yong Cai ◽  
Dong-Mei Bai ◽  
...  

A novel label-free biosensor for high sensing of NAD+ based on dsDNA-templated CuNPs and DNA ligation reaction.


2018 ◽  
Vol 71 (12) ◽  
pp. 945
Author(s):  
Xin Fu ◽  
He Zhang ◽  
Jie Zhang ◽  
Shi-Tong Wen ◽  
Xing-Cheng Deng

A highly sensitive and label-free microbead-based ‘turn-on’ assay was developed for the detection of Hg2+ in urine based on the Hg2+-mediated formation of intermolecular split G-quadruplex–hemin DNAzymes. In the presence of Hg2+, T–T mismatches between the two partial cDNA strands were stabilized by a T–Hg2+–T base pair, and can cause the G-rich sequences of the two oligonucleotides to associate to form a split G-quadruplex which is able to bind hemin to form the catalytically active G-quadruplex–hemin DNAzyme. This microbead-based ‘turn-on’ process allows the detection of Hg2+ in urine samples at concentrations as low as 0.5 pM. The relative standard deviation and recovery are 1.2–3.9 and 98.7–103.2%, respectively. The remarkable sensitivity for Hg2+ is mainly attributed to the enhanced mass transport ability that is inherent in homogeneous microbead-based assays. Compared with previous developments of intermolecular split G-quardruplex–hemin DNAzymes for the homogeneous detection of Hg2+ (the limit of detection was 19nM), a signal enhancement of ~1000 times is obtained when such an assay is performed on the surface of microbeads.


Sign in / Sign up

Export Citation Format

Share Document