Random-effects regression model for shear wave velocity as a function of standard penetration test resistance, vertical effective stress, fines content, and plasticity index

2017 ◽  
Vol 103 ◽  
pp. 95-104
Author(s):  
Mohammad Motalleb Nejad ◽  
Kalehiwot Nega Manahiloh ◽  
Mohammad Sadegh Momeni
2015 ◽  
Vol 58 (3) ◽  
Author(s):  
Azam Ghazi ◽  
Naser Hafezi Moghadas ◽  
Hosein Sadeghi ◽  
Mohamad Ghafoori ◽  
Gholam Reza Lashkaripur

<p>Shear wave velocity, V<sub>s</sub>, is one of the important input parameters in seismic response analysis of the ground. Various methods have been examined to measure the soil V<sub>s</sub> directly. Direct measurement of V<sub>s</sub> is time consuming and costly, therefore many researchers have been trying to update empirical relationships between V<sub>s</sub> and other geotechnical properties of soils such as SPT Blow count, SPT-N. In this study the existence of a statistical relationship between V<sub>s</sub>, SPT-N<sub>60 </sub>and vertical effective stress, signa<sub>nu</sub>´, is investigated. Data set we used in this study was gathered from geotechnical and geophysical investigations reports. The data have been extracted from more than 130 numbers of geotechnical boreholes from different parts of Mashhad city. In each borehole the V<sub>s</sub> has been measured by downhole method at two meter intervals. The SPT test also has performed at the same depth. Finally relationships were developed by regression analysis for gravels, sands and fine grain soils. The proposed relationships indicate that V<sub>s</sub> is strongly dependent on signa<sub>nu</sub>´. In this paper the effect of fine percent also is considered on the V<sub>s</sub> estimation.</p>


2014 ◽  
Vol 2 (4) ◽  
pp. 2443-2461 ◽  
Author(s):  
I. Shooshpasha ◽  
A. Kordnaeij ◽  
U. Dikmen ◽  
H. MolaAbasi ◽  
I. Amir

Abstract. Shear wave velocity (VS) is a basic engineering property implemented in evaluating the soil shear modulus. In many instances it may be preferable to determine VS indirectly by common in-situ tests, such as the Standard Penetration Test (SPT). In this paper, the relationship between VS and geotechnical soil parameters such as standard penetration test blow counts (N160), effective stress and fines content, as well as overburden stress ratio (σvo/σ′vo), is investigated. A new mode based on support vector machine (SVM) approach is proposed to correlate geotechnical parameters and VS, predicated on a total of 620 data sets, including field investigation records for the Kocaeli (Turkey, 1999) and Chi-Chi (Taiwan, 1999) earthquakes. This study addresses the question of whether Support Vector Machine (SVM) approach should be used to estimate VS based on the specified geotechnical variables, and assessing the influence of each variable on VS. Results revealed that SVM, in comparison to previous statistical relations, provides an effective means of efficiently recognizing the patterns in data and accurately predicting the VS.


1978 ◽  
Vol 6 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Yutaka Ohta ◽  
Noritoshi Goto ◽  
Hiroshi Kagami ◽  
Keishi Shiono

Sign in / Sign up

Export Citation Format

Share Document