Environmental impacts of the production of synthetic natural gas from industrial carbon dioxide

Author(s):  
Remi Chauvy ◽  
Lionel Dubois ◽  
Diane Thomas ◽  
Guy De Weireld
2020 ◽  
Vol 260 ◽  
pp. 114249 ◽  
Author(s):  
Remi Chauvy ◽  
Lionel Dubois ◽  
Paul Lybaert ◽  
Diane Thomas ◽  
Guy De Weireld

2014 ◽  
Vol 59 (11) ◽  
pp. 3502-3509 ◽  
Author(s):  
Khalik M. Sabil ◽  
Qazi Nasir ◽  
Bezhad Partoon ◽  
Akbar A. Seman

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
William L. Becker ◽  
Michael Penev ◽  
Robert J. Braun

Power-to-gas to energy systems are of increasing interest for low carbon fuels production and as a low-cost grid-balancing solution for renewables penetration. However, such gas generation systems are typically focused on hydrogen production, which has compatibility issues with the existing natural gas pipeline infrastructures. This study presents a power-to-synthetic natural gas (SNG) plant design and a techno-economic analysis of its performance for producing SNG by reacting renewably generated hydrogen from low-temperature electrolysis with captured carbon dioxide. The study presents a “bulk” methanation process that is unique due to the high concentration of carbon oxides and hydrogen. Carbon dioxide, as the only carbon feedstock, has much different reaction characteristics than carbon monoxide. Thermodynamic and kinetic considerations of the methanation reaction are explored to design a system of multistaged reactors for the conversion of hydrogen and carbon dioxide to SNG. Heat recuperation from the methanation reaction is accomplished using organic Rankine cycle (ORC) units to generate electricity. The product SNG has a Wobbe index of 47.5 MJ/m3 and the overall plant efficiency (H2/CO2 to SNG) is shown to be 78.1% LHV (83.2% HHV). The nominal production cost for SNG is estimated at 132 $/MWh (38.8 $/MMBTU) with 3 $/kg hydrogen and a 65% capacity factor. At U.S. DOE target hydrogen production costs (2.2 $/kg), SNG cost is estimated to be as low as 97.6 $/MWh (28.6 $/MMBtu or 1.46 $/kgSNG).


2019 ◽  
Vol 34 ◽  
pp. 293-302 ◽  
Author(s):  
Chundong Zhang ◽  
Ruxing Gao ◽  
Ki-Won Jun ◽  
Seok Ki Kim ◽  
Sun-Mi Hwang ◽  
...  

Author(s):  
Philip K. Panicker ◽  
Amani Magid

This paper presents qualitative evidence to support the application of microwave induced plasma gasification (MIPG) technology for converting municipal solid wastes (MSW) to syngas and to use it for enhanced oil recovery (EOR). The target for the case study of this paper is the United Arab Emirates, which is a major producer and exporter of petroleum. The main EOR method employed by the UAE’s oil companies is the miscible gas flooding method, whereby natural gas or carbon dioxide is injected into the oil reservoirs to boost the oil pressure, reduce the viscosity of the oil and to increase the pumping rates. UAE purchases natural gas for power production and EOR from its neighbor, Qatar, which makes the UAE a net importer of natural gas and a major consumer of energy, while reducing the national income from the oil sales. The UAE is looking at ways to boost its oil production and to reduce the usage of natural gas, including the injection of carbon dioxide, nitrogen and steam generated by concentrated solar power. UAE and the other Arabian Gulf nations have some of the highest per capita rates of production of domestic waste. Landfilling is the prevalent form of waste disposal for industrial, commercial and residential waste. Incineration-type waste-to-energy power plants are being constructed, but they are not the most effective solution due to cost and environmental reasons. This paper proposes a solution that covers the two problems with one technology, namely MIPG of MSW. MIPG is shown to be the most efficient method of gasification available, as it uses much less energy for producing and sustaining the plasma than other techniques, and produces a much cleaner syngas than thermochemical gasification schemes. The syngas can be used for electricity generation or for making fuels and raw materials in the Fischer-Tropsch or similar processes. In this proposal, MIPG will be used to turn MSW, sewage sludge and biomass wastes into syngas. A part of the syngas will be used to produce electricity to power the petroleum extraction processes, while the carbon dioxide formed in this combustion of syngas can be captured and used for EOR in deep oil wells, which also functions as a form of sequestration of carbon. In addition, syngas can be turned into methane and synthetic natural gas using the Fischer-Tropsch or Sabatier process and then pumped into the oil wells. Some of the petroleum extracted can also be gasified using the MIPG method for the production of synthetic natural gas. Thus, the dependence on natural gas imports will be eliminated, while also achieving zero landfill targets.


Paliva ◽  
2020 ◽  
pp. 7-11
Author(s):  
Kateřina Vondráková ◽  
Veronika Šnajdrová ◽  
Veronika Kyslová ◽  
Tomáš Hlinčík

An increasing concentration of carbon dioxide in the atmosphere is the driving force of on its utilization in different technological processes. Those processes are CCS (Carbon, Capture and Storage) and in particular in CCU (Carbon, Capture and Utilization). One of the promising CCU processes is the catalytic methanation of carbon dioxide and hydrogen. The catalytic methanation utilizes hydrogen, which can be produced using sustainable renewable energy (wind or solar) with unsteady power production. The main product of the catalytic methanation is a synthetic natural gas, consisting mainly of methane. The synthetic natural gas can be used as a substitute for natural gas in energetic applications. This paper presents results from testing of nickel catalyst (Ni/γ-Al2O3) with a variable mass fraction of nickel. Methanation reaction was tested at temperatures below 450 °C and gauge pressure of 0.5 MPa in a through-flow reactor, with a stoichiometric mixture of hydrogen and carbon dioxide. During experiments, catalytic activity, methane selectivity, hydrogen and carbon dioxide conversion were measured.


2014 ◽  
Author(s):  
W. L. Becker ◽  
R. J. Braun ◽  
M. Penev

The natural gas distribution infrastructure is well developed in many countries, enabling the fuel to be transported long distances via pipelines and easily delivered throughout cities. Using the existing pipeline to transport renewably generated synthetic natural gas (SNG) can leverage the value of the product. While the price of natural gas is near record lows in the United States, many other countries are working to develop SNG as an alternative fuel for transportation markets, especially in Europe and for island nations. This study presents an SNG plant design and evaluates its performance for producing SNG by reacting renewably generated hydrogen with carbon dioxide. The carbon dioxide feedstock is assumed to be captured and scrubbed from an existing coal fired power plant at the city-gate, where the SNG plant is co-located. Historically, methanation has been a common practice for eliminating carbon monoxide and carbon dioxide in various chemical processes such as ammonia production and natural gas purification; for these processes, only small amounts (1–3% molar basis) of carbon oxides need to be converted to methane. A “bulk” methanation process is unique due to the high concentration of carbon oxides and hydrogen. In addition, the carbon dioxide is the only carbon source, and the reaction characteristics of carbon dioxide are much different than carbon monoxide. Thermodynamic and kinetic considerations of the methanation reaction are explored to model and simulate a system of reactors for the conversion of hydrogen and carbon dioxide to SNG. Multiple reactor stages are used to increase temperature control of the reactor and drain water to promote the forward direction of the methanation reaction. Heat recuperation and recovery using organic Rankine cycle units for electricity generation utilizes the heat produced from the methanation reaction. Bulk recycle is used to increase the overall reactant conversion while allowing a satisfactorily high methane content SNG product. A hydrogen membrane separates hydrogen for recycle to increase the Wobbe index of the product SNG by increasing the methane content to nearly 93% by volume. The product SNG has a Wobbe index of 47.5 MJ/m3 which is acceptable for natural gas pipeline transport and end-use appliances in the existing infrastructure. The overall plant efficiency is shown to be 78.1% HHV and 83.2% LHV. The 2nd Law efficiency for the SNG production plant is 84.1%.


Sign in / Sign up

Export Citation Format

Share Document