Non-compliance behaviour of pedestrians and the associated conflicts at signalized intersections in India

2022 ◽  
Vol 147 ◽  
pp. 105604
Author(s):  
Abhinav Kumar ◽  
Indrajit Ghosh
Transport ◽  
2016 ◽  
Vol 33 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Sankaran Marisamynathan ◽  
Perumal Vedagiri

Enhancing pedestrian safety and improving the design standards of pedestrian facilities at signalized intersection requires a clear understanding of pedestrian delay model and pedestrian crossing behaviours under mixed traffic condition. The existing delay models do not consider the behavioural constrains of pedestrians. This research has been undertaken with the aim of developing a suitable pedestrian delay model for signalized intersection crosswalks, based on considering actual pedestrian crossing behaviours. The required model parameters were extracted from the video-graphic survey conducted for the selected four signalized intersections in Mumbai (India). Crossing behaviours of pedestrians were examined through field data in terms of pedestrian arrival pattern, crossing speed, compliance behaviour and pedestrian–vehicular interactions. Based on pedestrian crossing behaviour analysis results, two new pedestrian delay estimation models were developed and the models were validated by comparing with field and existing model values. The performance level of the proposed models is showing more precise and reliable solutions. The first pedestrian delay model is developed on the basis of compliance behaviour, has two components, such as waiting time delay and crossing time delay. This model can be used to evaluate pedestrian Level Of Service (LOS) and signal timing optimization. The second developed pedestrian delay model is based on noncompliance behaviour, has three components, such as waiting time delay, crossing time delay, and pedestrian–vehicular interaction delay. This model can also be used to evaluate the quality of pedestrian flow, estimating accurate pedestrian delay and LOS for local conditions, which is representative of the prevailing pedestrian condition.


2019 ◽  
Vol 11 (4) ◽  
pp. 168781401984183 ◽  
Author(s):  
Zhuping Zhou ◽  
Sixian Liu ◽  
Wenxin Xu ◽  
Ziyuan Pu ◽  
Shuichao Zhang ◽  
...  

Author(s):  
Zihang Wei ◽  
Yunlong Zhang ◽  
Xiaoyu Guo ◽  
Xin Zhang

Through movement capacity is an essential factor used to reflect intersection performance, especially for signalized intersections, where a large proportion of vehicle demand is making through movements. Generally, left-turn spillback is considered a key contributor to affect through movement capacity, and blockage to the left-turn bay is known to decrease left-turn capacity. Previous studies have focused primarily on estimating the through movement capacity under a lagging protected only left-turn (lagging POLT) signal setting, as a left-turn spillback is more likely to happen under such a condition. However, previous studies contained assumptions (e.g., omit spillback), or were dedicated to one specific signal setting. Therefore, in this study, through movement capacity models based on probabilistic modeling of spillback and blockage scenarios are established under four different signal settings (i.e., leading protected only left-turn [leading POLT], lagging left-turn, protected plus permitted left-turn, and permitted plus protected left-turn). Through microscopic simulations, the proposed models are validated, and compared with existing capacity models and the one in the Highway Capacity Manual (HCM). The results of the comparisons demonstrate that the proposed models achieved significant advantages over all the other models and obtained high accuracies in all signal settings. Each proposed model for a given signal setting maintains consistent accuracy across various left-turn bay lengths. The proposed models of this study have the potential to serve as useful tools, for practicing transportation engineers, when determining the appropriate length of a left-turn bay with the consideration of spillback and blockage, and the adequate cycle length with a given bay length.


2020 ◽  
Vol 11 (1) ◽  
pp. 216-226
Author(s):  
Bara’ W. Al-Mistarehi ◽  
Ahmad H. Alomari ◽  
Mohamad S. Al Zoubi

AbstractThis study aimed to investigate a potential list of variables that may have an impact on the saturation flow rate (SFR) associated with different turning movements at signalized intersections in Jordan. Direct visits to locations were conducted, and a video camera was used. Highway capacity manual standard procedure was followed to collect the necessary traffic data. Multiple linear regression was performed to classify the factors that impact the SFR and to find the optimal model to foretell the SFR. Results showed that turning radius, presence of camera enforcement, and the speed limit are the significant factors that influence SFR for shared left- and U-turning movements (LUTM) with R2 = 76.9%. Furthermore, the presence of camera enforcement, number of lanes, speed limit, city, traffic volume, and area type are the factors that impact SFR for through movements only (THMO) with R2 = 69.6%. Also, it was found that the SFR for LUTM is 1611 vehicles per hour per lane (VPHPL),which is less than the SFR for THMO that equals to 1840 VPHPL. Calibration and validation of SFR based on local conditions can improve the efficiency of infrastructure operation and planning activities because vehicles’ characteristics and drivers’ behavior change over time.


2021 ◽  
Vol 49 (5) ◽  
pp. 030006052110161
Author(s):  
Jing Li ◽  
Qiao-Ping Li ◽  
Bi-Hong Yang

Objective The study aim was to analyse the effect of participatory continuous nursing using the WeChat platform on the complications, family function and compliance of patients with spinal cord injuries. Methods This was a randomized controlled trial. Seventy-eight patients with stable disease treated by internal fixation were enrolled in the study from August 2017 to August 2019 and assigned equally to an observation group and a control group. The control group received regular care from the time of discharge. The observation group used the WeChat platform to participate in continuous care. Results Six months after discharge, the continuous nursing group had a significantly lower incidence of pressure ulcers, urinary tract infections, joint contractures and muscle atrophy than the control group. The continuous nursing group showed a significant improvement in family function level and compliance behaviour at 3 and 6 months after discharge. Conclusion A participation-based continuous nursing intervention using the WeChat platform can reduce the incidence of pressure ulcers, urinary tract infections, joint contracture and muscle atrophy; improve patient family function; and promote healthy compliance behaviour.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Shan Fang ◽  
Lan Yang ◽  
Tianqi Wang ◽  
Shoucai Jing

Traffic lights force vehicles to stop frequently at signalized intersections, which leads to excessive fuel consumption, higher emissions, and travel delays. To address these issues, this study develops a trajectory planning method for mixed vehicles at signalized intersections. First, we use the intelligent driver car-following model to analyze the string stability of traffic flow upstream of the intersection. Second, we propose a mixed-vehicle trajectory planning method based on a trigonometric model that considers prefixed traffic signals. The proposed method employs the proportional-integral-derivative (PID) model controller to simulate the trajectory when connected vehicles (equipped with internet access) follow the optimal advisory speed. Essentially, only connected vehicle trajectories need to be controlled because normal vehicles simply follow the connected vehicles according to the Intelligent Driver Model (IDM). The IDM model aims to minimize traffic oscillation and ensure that all vehicles pass the signalized intersection without stopping. The results of a MATLAB simulation indicate that the proposed method can reduce fuel consumption and NOx, HC, CO2, and CO concentrations by 17%, 22.8%, 17.8%, 17%, and 16.9% respectively when the connected vehicle market penetration is 50 percent.


Sign in / Sign up

Export Citation Format

Share Document