Regulation of cover crops and weeds using a roll-chopper for herbicide reduction in no-tillage winter wheat

2013 ◽  
Vol 134 ◽  
pp. 121-132 ◽  
Author(s):  
Brigitte Dorn ◽  
Marina Stadler ◽  
Marcel van der Heijden ◽  
Bernhard Streit
Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1210
Author(s):  
Subodh Adhikari ◽  
Fabian D. Menalled

Ground beetles (Carabidae) are beneficial insects providing ecosystem services by regulating insect pests and weed seeds. Despite several studies conducted on ground beetles worldwide, there is a lack of knowledge on how these insects are affected by differently managed organic systems (e.g., tillage-based versus grazed-based) compared to that of chemical-based no-tillage conventional cropping systems. In a 5-year (2013–2017) study, we assessed the ground beetle communities in cover crops and winter wheat (Triticum aestivium L.) in Montana, USA, with three contrasting cropping systems: a chemically managed no-tillage, a tillage-based organic, and a livestock-integrated organic with reduced tillage. The first three years (i.e., 2013–2015) corresponded to the transition to organic period, while the last two (i.e., 2016–2017) were conducted in United States Department of Agriculture (USDA) organic-certified tillage-based and livestock-integrated organic systems. The experiment was designed with three management systems across three blocks as the whole plot variable and 5-year rotation of crop phases as the subplot variable. Using pitfall traps, we sampled ground beetles across all cover crop and winter wheat subplots for five years (n = 450). The data were analyzed using mixed effects models and PERMANOVA and visualized with non-metric multidimensional scaling ordination. Our study indicated that organically managed farms, whether tilled or grazed, enhance activity density, species richness, diversity, and evenness of ground beetles in the dryland row crop productions. Also, irrespective of farming system, cover crops supported higher species richness, diversity, and evenness of ground beetles than winter wheat. The ground beetle communities were mostly similar during the transition to organic period. However, during the established organic phase, cropping systems acted as contrasting ecological filters and beetle communities became dissimilar. Cover cropping affected ground beetle communities positively not only in organically managed systems but also in chemical-based conventional systems. Our study provides evidence supporting the adoption of ecologically-based cropping systems such as crop-livestock integration, organic farming, and cover cropping to enhance beneficial insects and their pest-regulation services.


2020 ◽  
pp. 1-8
Author(s):  
John A. Schramski ◽  
Christy L. Sprague ◽  
Karen A. Renner

Abstract Glyphosate-resistant horseweed is difficult to manage in no-tillage crop production fields and new strategies are needed. Cover crops may provide an additional management tool but narrow establishment windows and colder growing conditions in northern climates may limit the cover crop biomass required to suppress horseweed. Field experiments were conducted in 3 site-years in Michigan to investigate the effects of two fall-planted cover crops, cereal rye and winter wheat, seeded at 67 or 135 kg ha−1, to suppress horseweed when integrated with three preplant herbicide strategies in no-tillage soybean. The preplant strategies were control (glyphosate only), preplant herbicide without residuals (glyphosate + 2,4-D), and preplant herbicide with residuals (glyphosate + 2,4-D + flumioxazin + metribuzin). Cereal rye produced 79% more biomass and provided 12% more ground cover than winter wheat in 2 site-years. Increasing seeding rate provided 41% more cover biomass in 1 site-year. Cover crops reduced horseweed density 47% to 96% and horseweed biomass by 59% to 70% compared with no cover at the time of cover crop termination. Cover crops provided no additional horseweed suppression 5 wk after soybean planting if a preplant herbicide with or without residuals was applied, but reduced horseweed biomass greater than 33% in the absence of preplant herbicides. Cover crops did not affect horseweed suppression at the time of soybean harvest or influence soybean yield. Preplant herbicide with residuals and without residuals provided at least 52% and 20% greater soybean yield compared with the control at 2 site-years, respectively. Cereal rye and winter wheat provided early-season horseweed suppression at biomass levels below 1,500 kg ha−1, lower than previously reported. This could give growers in northern climates an effective strategy for suppressing horseweed through the time of POST herbicide application while reducing selection pressure for horseweed that is resistant to more herbicide sites of action.


2020 ◽  
Vol 31 (2) ◽  
pp. 90-92
Author(s):  
Rob Edwards

Herbicide resistance in problem weeds is now a major threat to global food production, being particularly widespread in wild grasses affecting cereal crops. In the UK, black-grass (Alopecurus myosuroides) holds the title of number one agronomic problem in winter wheat, with the loss of production associated with herbicide resistance now estimated to cost the farming sector at least £0.5 billion p.a. Black-grass presents us with many of the characteristic traits of a problem weed; being highly competitive, genetically diverse and obligately out-crossing, with a growth habit that matches winter wheat. With the UK’s limited arable crop rotations and the reliance on the repeated use of a very limited range of selective herbicides we have been continuously performing a classic Darwinian selection for resistance traits in weeds that possess great genetic diversity and plasticity in their growth habits. The result has been inevitable; the steady rise of herbicide resistance across the UK, which now affects over 2.1 million hectares of some of our best arable land. Once the resistance genie is out of the bottle, it has proven difficult to prevent its establishment and spread. With the selective herbicide option being no longer effective, the options are to revert to cultural control; changing rotations and cover crops, manual rogueing of weeds, deep ploughing and chemical mulching with total herbicides such as glyphosate. While new precision weeding technologies are being developed, their cost and scalability in arable farming remains unproven. As an agricultural scientist who has spent a working lifetime researching selective weed control, we seem to be giving up on a technology that has been a foundation stone of the green revolution. For me it begs the question, are we really unable to use modern chemical and biological technology to counter resistance? I would argue the answer to that question is most patently no; solutions are around the corner if we choose to develop them.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


2021 ◽  
Author(s):  
Arminda Moreira de Carvalho ◽  
Luana Ramos Passos Ribeiro ◽  
Robélio Leandro Marchão ◽  
Alexsandra Duarte de Oliveira ◽  
Karina Pulrolnik ◽  
...  

Plant Disease ◽  
1997 ◽  
Vol 81 (5) ◽  
pp. 530-534 ◽  
Author(s):  
R. E. Baird ◽  
B. G. Mullinix ◽  
A. B. Peery ◽  
M. L. Lang

The survival of the mycobiota on pod and stem debris of soybean produced in a no-tillage system with cover crops of alfalfa, canola, rye, or wheat or with no cover was studied during 1994 and 1995. Fiberglass mesh bags containing pods and stems were assayed every 28 to 31 days to determine the isolation frequency of fungi. Over 90% of the 11,906 isolates obtained were members of the Deuteromycotina. The most common genera isolated were Alternaria, Cercos-pora, Colletotrichum, Epicoccum, Fusarium, and Phoma. Alternaria spp. had the greatest isolation frequencies and constituted 40% of the total cultures. Numbers of total fungi (all fungi isolated) on sampling dates in 1994 were similar to the totals in 1995. In May 1994, the mean isolation rates for many of the fungal species were significantly lower (P = 0.05) in several of the cover crops, but no consistent pattern could be determined. Common soybean pathogens isolated included Colletotrichum spp., Diaporthe spp., and Cercospora kikuchii. Fusarium graminearum, which is responsible for several diseases of maize and wheat, was commonly isolated during this study. Of the Diaporthe spp. (anamorph Phomopsis spp.), 87% were identified as D. phaseolorum var. sojae. Colletotrichum spp. were identified as C. truncatum in 85% of the isolates, C. destructivum (teleomorph Glomerella glycines) in 12%, and both species in 3%. Cercospora kikuchii was more commonly isolated from pods than from stem tissue, and Colletotrichum spp. occurred more frequently on stems. Isolation frequencies of Diaporthe spp. were greater in May of both years than in the preceding months. These results show that no-tillage soybean debris harbors numerous fungi pathogenic to soybean, and producers who grow soybeans continuously may find more disease in this crop and lower yields. Fungi that attack crops such as maize and wheat were commonly isolated from soybean debris in both years, and a no-tillage rotation which includes maize or wheat could result in increased disease in these crops. Isolation frequencies of the fungi from cover crops varied with the sampling date, but no consistent patterns could be determined for a particular cover crop or fungal species. This is the first detailed study of survival rates of soybean, maize, and wheat pathogens that overwinter on soybean debris in a no-tillage system.


2021 ◽  
Vol 161 ◽  
pp. 113174
Author(s):  
Deonir Secco ◽  
Doglas Bassegio ◽  
Bruna de Villa ◽  
Araceli Ciotti de Marins ◽  
Luiz Antônio Zanão Junior ◽  
...  

2017 ◽  
Vol 35 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Roberto BF Branco ◽  
Sally F Blat ◽  
Tais GS Gimenes ◽  
Rodrigo HD Nowaki ◽  
Humberto S Araújo ◽  
...  

ABSTRACT The production of horticultural crops in no-tillage and in rotation with cover crops reduces the dependency in nitrogen fertilizer, due to increased soil organic matter and by biological fixation performed by legumes. Thus, the aim of this work was to study rates of nitrogen fertilization and cover crops in the agronomic performance of tomato and broccoli grown under no-tillage. The experiment was conducted in a split plot design with four replications. Treatments consisted of cover crops, sunn hemp and millet, and four rates of nitrogen fertilization (0, 50, 100 and 200 kg/ha of nitrogen), for both the tomato and broccoli crops. All soil management was performed in no-tillage. For tomato crops we evaluated the plant growth, the nitrate concentration of sprouts and fruits and yield of commercial and non commercial fruits. For broccoli we evaluated plant growth and yield. There was an interaction effect between cover crop and nitrogen rates to tomato growth measured at 100 days after transplanting, for plant height, number of fruit bunches, dry mass of leaves and diameter of the stalk. The tomato commercial fruit number and yield showed maximum values with 137 and 134 kg/ha of N respectively, on the sunn hemp straw. The nitrate concentration of the tomato sprouts was linearly increasing with the increase of nitrogen rates, when grown on the millet straw. For broccoli production, the maximum fresh mass of commercial inflorescence was with 96 kg/ha of N, when grown on the millet straw.


2014 ◽  
Vol 38 (3) ◽  
pp. 972-979 ◽  
Author(s):  
Arminda Moreira de Carvalho ◽  
Mercedes Maria da Cunha Bustamante ◽  
Zayra Azeredo do Prado Almondes ◽  
Cícero Célio de Figueiredo

Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.


2018 ◽  
Vol 48 (2) ◽  
pp. 153-162 ◽  
Author(s):  
Orivaldo Arf ◽  
José Roberto Portugal ◽  
Salatiér Buzetti ◽  
Ricardo Antônio Ferreira Rodrigues ◽  
Marco Eustáquio de Sá

ABSTRACT The Brazilian Savannah region presents a great potential for the expansion of upland rice crops. However, studies are necessary to identify practices that can improve the crop performance, especially in no-tillage systems. This study aimed to assess the effect of cover crops in association with corn on the development and yield of rice cultivated in rotation and cover fertilized with nitrogen doses. The sprinkler irrigation system was used and the experiment was developed in the 2014/2015 and 2016/2017 harvest years, using a randomized block design, in a 5 × 4 factorial scheme. The treatments consisted of the crop remains combinations of single corn crop, corn + Crotalaria spectabilis, corn + pigeon pea, corn + jack bean and corn + Urochloa ruziziensis, as well as cover nitrogen doses (0 kg ha-1, 40 kg ha-1, 80 kg ha-1 and 120 kg ha-1) in the rice. The cultivation of upland rice in rotation with corn + pigeon pea was favored by the greater soil cover and nitrogen supply via cycling, if compared to the rotation with single corn crop. The intercropped corn + pigeon pea cultivation in the previous summer resulted in a 15 % increase in the yield of rice grains seeded in the rotation, when compared to the single corn crop. The cover nitrogen application positively influenced the grain yield with the maximum estimated doses of 46 kg ha-1 and 105 kg ha-1 of nitrogen, respectively in the 2014/2015 and 2016/2017 harvest years.


Sign in / Sign up

Export Citation Format

Share Document