Soil water, nutrient distribution and use efficiencies under different water and fertilizer coupling in an apple–maize alley cropping system in the Loess Plateau, China

2022 ◽  
Vol 218 ◽  
pp. 105308
Author(s):  
Xiaoyu Dou ◽  
Ruoshui Wang ◽  
Xuan Zhou ◽  
Fei Gao ◽  
Yang Yu ◽  
...  
2021 ◽  
Vol 312 ◽  
pp. 107354 ◽  
Author(s):  
Ai-Tian Ren ◽  
Rui Zhou ◽  
Fei Mo ◽  
Shu-Tong Liu ◽  
Ji-Yuan Li ◽  
...  

2021 ◽  
Vol 312 ◽  
pp. 107342
Author(s):  
Rui Zhang ◽  
Di Wang ◽  
Ziqi Yang ◽  
Katsutoshi Seki ◽  
Manmohanjit Singh ◽  
...  

2005 ◽  
Vol 60 (5) ◽  
pp. 1013-1016
Author(s):  
Reiji KIMURA ◽  
Yuanbo LIU ◽  
Naru TAKAYAMA ◽  
Makio KAMICHIKA ◽  
Nobuhiro MATSUOKA ◽  
...  

2018 ◽  
Vol 417 ◽  
pp. 137-143 ◽  
Author(s):  
Yu Liu ◽  
Hai-Tao Miao ◽  
Ze Huang ◽  
Zeng Cui ◽  
Honghua He ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2183 ◽  
Author(s):  
Zhiqiang Zhang ◽  
Bingcheng Si ◽  
Huijie Li ◽  
Min Li

Piston and preferential water flow are viewed as the two dominant water transport mechanisms regulating terrestrial water and solute cycles. However, it is difficult to accurately separate the two water flow patterns because preferential flow is not easy to capture directly in field environments. In this study, we take advantage of the afforestation induced desiccated deep soil, and directly quantify piston and preferential water flow using chloride ions (Cl−) and soil water profiles, in four deforested apple orchards on the Loess Plateau. The deforestation time ranged from 3 to 15 years. In each of the four selected orchards, there was a standing orchard that was planted at the same time as the deforested one, and therefore the standing orchard was used to benchmark the initial Cl− and soil water profiles of the deforested orchard. In the deforested orchards, piston flow was detected using the migration of the Cl− front, and preferential flow was measured via soil water increase below the Cl− front. Results showed that in the desiccated zone, Cl− migrated to deeper soil after deforestation, indicating that the desiccated soil layer formed by the water absorption of deep-rooted apple trees did not completely inhibit the movement of water. Moreover, there was an evident increase in soil water below the downward Cl− front, directly demonstrating the existence of preferential flow in deep soil under field conditions. Although pore water velocity was small in the deep loess, preferential water flow still accounted for 34–65% of total infiltrated water. This study presented the mechanisms that regulate movement of soil water following deforestation through field observations and advanced our understanding of the soil hydrologic process in deep soil.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 793
Author(s):  
Yan Mu ◽  
Di Wang ◽  
Yanping Wang

Knowledge of changes in soil-water storage (SWS) at multiple scales in apple orchards is important for formulating policies for the scientific management and sound planning of apple plantations on the Loess Plateau in China. In this study, we measured precipitation, partitioned evapotranspiration (ET) into canopy interception, transpiration, and soil evaporation, and calculated the changes in SWS using the water-balance method at multiple scales in two neighbouring apple orchards (8 and 18 years old) on the Loess Plateau from May to September in 2013, 2014, 2015, and 2016. The results showed that ET was consistently lower for the 8- than the 18-year-old orchard in each year at the same scale (p < 0.05). The changes in SWS differed between the two orchards at the same scale, but the trends of change were similar in each year. The trend of the change in SWS at the same scale differed amongst the years for both orchards. The maximum supply of water from soil reservoirs for the two orchards also differed at different scales in each year and was higher at a daily cumulative scale than a monthly and annual scale in 2013, 2014, and 2016. The daily cumulative scale was thus a more suitable scale for representing the maximum contribution of the soil reservoir to supply water for the growth of the orchards during the study periods. Changes in SWS at a daily cumulative scale should be considered when assessing the effect of apple orchards on regional soil reservoirs on the Loess Plateau or in other water-limited regions.


Sign in / Sign up

Export Citation Format

Share Document