First principles calculations on the influence of solute elements and chlorine adsorption on the anodic corrosion behavior of Mg (0001) surface

2018 ◽  
Vol 672-673 ◽  
pp. 68-74 ◽  
Author(s):  
Zhe Luo ◽  
Hong Zhu ◽  
Tao Ying ◽  
Dejiang Li ◽  
Xiaoqin Zeng
2021 ◽  
Vol 21 (4) ◽  
pp. 2221-2233
Author(s):  
Yaru Liu ◽  
Qinglin Pan ◽  
Xiangdong Wang ◽  
Ye Ji ◽  
Qicheng Liu ◽  
...  

The corrosion mechanisms for different corrosive media on the aged 7A46 aluminum alloy were systematically investigated at nanoscale level. The combination of empirical intergranular and exfoliation corrosion behavior was employed, and coupled with first-principles calculations. Results revealed that the dispersed distribution of matrix precipitates (MPs) leads to the enhancement of the corrosion resistance pre-ageing (PA) followed by double-ageing (PA-DA) alloy. The deepest corrosion depth of PA-DA alloy was in hydrochloric acid, and the calculation result demonstrates that the passivation effect in combination with the accumulation of corrosion products in nitric acid protect the PA-DA alloy from further corrosion.


2016 ◽  
Vol 18 (11) ◽  
pp. 7789-7796 ◽  
Author(s):  
Dongdong Li ◽  
Bingyan Qu ◽  
H. Y. He ◽  
Y. G. Zhang ◽  
Yichun Xu ◽  
...  

In this work, the influence of Pb and Bi atoms on the anti-corrosion behavior of the oxide film (Fe3O4) formed on steel surface is investigated based on first-principles calculations.


2014 ◽  
Vol 52 (12) ◽  
pp. 1025-1029
Author(s):  
Min-Wook Oh ◽  
Tae-Gu Kang ◽  
Byungki Ryu ◽  
Ji Eun Lee ◽  
Sung-Jae Joo ◽  
...  

2019 ◽  
Author(s):  
Michele Pizzocchero ◽  
Matteo Bonfanti ◽  
Rocco Martinazzo

The manuscript addresses the issue of the structural distortions occurring at multiple bonds between high main group elements, focusing on group 14. These distortions are known as trans-bending in silenes, disilenes and higher group analogues, and buckling in 2D materials likes silicene and germanene. A simple but correlated \sigma + \pi model is developed and validated with first-principles calculations, and used to explain the different behaviour of second- and higher- row elements.


2019 ◽  
Author(s):  
Henrik Pedersen ◽  
Björn Alling ◽  
Hans Högberg ◽  
Annop Ektarawong

Thin films of boron nitride (BN), particularly the sp<sup>2</sup>-hybridized polytypes hexagonal BN (h-BN) and rhombohedral BN (r-BN) are interesting for several electronic applications given band gaps in the UV. They are typically deposited close to thermal equilibrium by chemical vapor deposition (CVD) at temperatures and pressures in the regions 1400-1800 K and 1000-10000 Pa, respectively. In this letter, we use van der Waals corrected density functional theory and thermodynamic stability calculations to determine the stability of r-BN and compare it to that of h-BN as well as to cubic BN and wurtzitic BN. We find that r-BN is the stable sp<sup>2</sup>-hybridized phase at CVD conditions, while h-BN is metastable. Thus, our calculations suggest that thin films of h-BN must be deposited far from thermal equilibrium.


Author(s):  
Jing-hua Guo ◽  
Jin-Xiang Liu ◽  
Hongbo Wang ◽  
Haiying Liu ◽  
Gang Chen

In this work, combining the first-principles calculations with kinetic Monte Carlo (KMC) simulations, we constructed an irregular carbon bridge on the graphene surface and explored the process of H migration...


Sign in / Sign up

Export Citation Format

Share Document