Tightly CCA-Secure Inner Product Functional Encryption Scheme

Author(s):  
Xiangyu Liu ◽  
Shengli Liu ◽  
Shuai Han ◽  
Dawu Gu
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Tao Wang ◽  
Bo Yang ◽  
Guoyong Qiu ◽  
Lina Zhang ◽  
Yong Yu ◽  
...  

Massive data are generated and collected by devices in the industrial Internet of Things. Data sources would encrypt the data and send them to the data center through the gateway. For some supervision purpose, the gateway needs to observe the encrypted data stream and label the suspicious data. Instead of decrypting ciphertext at the gateway, which is not efficient, this paper presents a Φ-searchable functional encryption scheme that supports inner product evaluations on encrypted data. Based on this scheme, an approach enabling various queries on the encrypted industrial data stream is proposed. The adaptive security of our proposed underlying functional encryption scheme can be proven under general subgroup decision assumptions, and our scheme has the smaller public key, the smaller secret key, and the smaller ciphertext size compared to the related schemes. In addition, the experimental results show that our proposed scheme is efficient. Especially for the gateway, querying on the encrypted data only needs less than 20ms, which is practical for industrial data stream auditing scenario.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wenbo Liu ◽  
Qiong Huang ◽  
Xinjian Chen ◽  
Hongbo Li

AbstractFunctional encryption (FE) is a novel paradigm for encryption scheme which allows tremendous flexibility in accessing encrypted information. In FE, a user can learn specific function of encrypted messages by restricted functional key and reveal nothing else about the messages. Inner product encryption (IPE) is a special type of functional encryption where the decryption algorithm, given a ciphertext related to a vector x and a secret key related to a vector y, computes the inner product x·y. In this paper, we construct an efficient private-key functional encryption (FE) for inner product with simulation-based security, which is much stronger than indistinguishability-based security, under the External Decisional Linear assumption in the standard model. Compared with the existing schemes, our construction is faster in encryption and decryption, and the master secret key, secret keys and ciphertexts are shorter.


Cybersecurity ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Shisen Fang ◽  
Shaojun Yang ◽  
Yuexin Zhang

Abstract The functional encryption scheme designed using the lattice can realize fine-grained encryption and it can resist quantum attacks. Unfortunately, the sizes of the keys and ciphertexts in cryptographic applications based on learning with errors are large, which makes the algorithm inefficient. Therefore, we construct a functional encryption for inner product predicates scheme by improving the learning with errors scheme of Agrawal et al. [Asiacrypt 2011], and its security relies on the difficulty assumption of ring learning with errors. Our construction can reduce the sizes of the keys and ciphertexts compared with the learning with errors scheme.


Sign in / Sign up

Export Citation Format

Share Document