Efficient one-pot selective reduction of esters in β-ketoesters using LiHMDS and lithium aluminium hydride

2011 ◽  
Vol 52 (11) ◽  
pp. 1205-1207 ◽  
Author(s):  
K. Sivagurunathan ◽  
S. Raja Mohamed Kamil ◽  
S. Syed Shafi ◽  
F. Liakth Ali Khan ◽  
R. Venkat Ragavan
1995 ◽  
Vol 50 (2) ◽  
pp. 294-302 ◽  
Author(s):  
Syed Najam-ul-Hussain Kazmia ◽  
Zaheer Ahmed ◽  
Abdul Malik ◽  
Nighat Afza ◽  
Wolfgang Voelterc

The regioselective epoxide opening of different 2,3-anhydropyranoses by cyanotrimethylsilane is investigated. The isolated cyanodeoxy pyranoses allow easy access to the corresponding branched-chains aminomethyl sugars by lithium aluminium hydride reduction or sugar amides by controlled acid hydrolysis.


2000 ◽  
Vol 65 (11) ◽  
pp. 1762-1776 ◽  
Author(s):  
Ladislav Cvak ◽  
Josef Stuchlík ◽  
Magdalena Schreiberová ◽  
Petr Sedmera ◽  
Vladimír Havlíček ◽  
...  

Five 6'-deoxoergopeptines were prepared in 51-68% yield by selective reduction of parent alkaloids with lithium aluminium hydride in tetrahydrofuran at low temperature. New compounds were characterized by mass spectrometry and NMR spectroscopy. The conformation of the peptide part in starting compounds and reduced derivatives is discussed on the basis of crystal structure determination of 6'-deoxo-9,10-dihydroergotamine dihydrate butan-2-one solvate as a representative member of the series.


2019 ◽  
Author(s):  
Miles Aukland ◽  
Mindaugas Šiaučiulis ◽  
Adam West ◽  
Gregory Perry ◽  
David Procter

<p>Aryl–aryl cross-coupling constitutes one of the most widely used procedures for the synthesis of high-value materials, ranging from pharmaceuticals to organic electronics and conducting polymers. The assembly of (hetero)biaryl scaffolds generally requires multiple steps; coupling partners must be functionalized before the key bond-forming event is considered. Thus, the development of selective C–H arylation processes in arenes, that side-step the need for prefunctionalized partners, is crucial for streamlining the construction of these key architectures. Here we report an expedient, one-pot assembly of (hetero)biaryl motifs using photocatalysis and two non-prefunctionalized arene partners. The approach is underpinned by the activation of a C–H bond in an arene coupling partner using the interrupted Pummerer reaction. A unique pairing of the organic photoredox catalyst and the intermediate dibenzothiophenium salts enables highly selective reduction in the presence of sensitive functionalities. The utility of the metal-free, one-pot strategy is exemplified by the synthesis of a bioactive natural product and the modification of complex molecules of societal importance.</p>


2017 ◽  
Vol 68 (1) ◽  
pp. 180-185
Author(s):  
Adriana Maria Andreica ◽  
Lucia Gansca ◽  
Irina Ciotlaus ◽  
Ioan Oprean

Were developed new and practical synthesis of (Z)-7-dodecene-1-yl acetate and (E)-9-dodecene-1-yl acetate. The routes involve, as the key step, the use of the mercury derivative of the terminal-alkyne w-functionalised as intermediate. The synthesis of (Z)-7-dodecene-1-yl acetate was based on a C6+C2=C8 and C8+C4=C12 coupling scheme, starting from 1,6-hexane-diol. The first coupling reaction took place between 1-tert-butoxy-6-bromo-hexane and lithium acetylide-ethylendiamine complex obtaining 1-tert-butoxy-oct-7-yne, which is transformed in di[tert-butoxy-oct-7-yne]mercury. The mercury derivative was directly lithiated and then alkylated with 1-bromobutane obtaining 1-tert-butoxy-dodec-7-yne. After acetylation and reduction with lithium aluminium hydride of 7-dodecyne-1-yl acetate gave (Z)-7-dodecene-1-yl acetate with 96 % purity. The synthesis of (E)-9-dodecene-1-yl acetate was based on a C8+C2=C10 and C10+C2=C12 coupling scheme, starting from 1,8-octane-diol. The first coupling reaction took place between 1-tert-butoxy-8-bromo-octane and lithium acetylide-ethylendiamine complex obtaining 1-tert-butoxy-dec-9-yne, which is transformed in di[tert-butoxy-dec-9-yne]mercury. The mercury derivative was directly lithiated and then alkylated with 1-bromoethane obtaining 1-tert-butoxy-dodec-9-yne. After reduction with lithium aluminium hydride of 1-tert-butoxy-(E)-9-dodecene and acetylation was obtained (E)-9-dodecene-1-yl acetate with 97 % purity.


1981 ◽  
Vol 46 (8) ◽  
pp. 1800-1807 ◽  
Author(s):  
Zdeněk Vejdělek ◽  
Marie Bartošová ◽  
Miroslav Protiva

4-Chloromethyl-s-hydrindacene (VIIa) was transformed via the malonic acid derivatives VIIIa and IXa to the acid Xb which afforded in four steps the homological acid Xc. Reactions of chlorides of both acids (XIbc ) with dimethylamine, 1-methylpiperazine and 1-(2-hydroxyethyl)piperazine led to the amides XIIbc-XIVbc which were reduced with lithium aluminium hydride to the title compounds IVcd-VIcd. The amines obtained show central neuroleptic effects only in subtoxic doses; they are also potent local anaesthetics and have significant spasmolytic activity of the neurotropic as well as musculotropic type.


1992 ◽  
Vol 57 (1) ◽  
pp. 194-203 ◽  
Author(s):  
Karel Šindelář ◽  
Vojtěch Kmoníček ◽  
Marta Hrubantová ◽  
Zdeněk Polívka

(Arylthio)benzoic acids IIa - IIe and VIb - VId were transformed via the acid chlorides to the N,N-dimethylamides which were reduced either with diborane "in situ" or with lithium aluminium hydride to N,N-dimethyl-(arylthio)benzylamines Ia - Ie and Vb - Vd. Leuckart reaction of the aldehydes IX and X with dimethylformamide and formic acid afforded directly the amines Va and Ve. Demethylation of the methoxy compounds Ia and Ve with hydrobromic acid resulted in the phenolic amines If and Vf. The most interesting N,N-dimethyl-4-(phenylthio)benzylamine (Va) hydrochloride showed affinity to cholinergic and 5-HT2 serotonin receptors in the rat brain and some properties considered indicative of antidepressant activity (inhibition of serotonin re-uptake in the brain and potentiation of yohimbine toxicity in mice).


Sign in / Sign up

Export Citation Format

Share Document