Cellular distribution of okadaic acid in the digestive gland of Mytilus galloprovincialis (Lamarck, 1819)

Toxicon ◽  
2008 ◽  
Vol 52 (8) ◽  
pp. 957-959 ◽  
Author(s):  
Araceli E. Rossignoli ◽  
Juan Blanco
2015 ◽  
Vol 93 (7) ◽  
pp. 567-578 ◽  
Author(s):  
V. Lozano ◽  
R. Martínez-Escauriaza ◽  
M.L. Pérez-Parallé ◽  
A.J. Pazos ◽  
J.L. Sánchez

Multidrug resistance associated proteins (MRP) belong to the ABCC branch of the ABC transporters. The MRP together with P-gp (P-glycoprotein; MDR1; ABCB1) and BCRP (breast cancer resistance protein; ABCG2) confer multixenobiotic resistance (MXR) in marine vertebrates. In aquatic invertebrates, little is known about the presence and role of these ABC transporters. The ABC transporters play an important role in the absorption, distribution, and excretion of drugs, xenobiotics, and endogenous compounds and are predominantly expressed in excretory organs. In the present study, we identified and characterized two MRP/ABCC transporters (mrp1 and mrp2) from the Mediterranean mussel (Mytilus galloprovincialis Lamarck, 1819). The two cDNAs finally obtained were 4648 bp for mrp1 and 5065 bp for mrp2 with open reading frames of 1500 and 1524 residues, respectively. Analysis of the amino acid sequences revealed the structural organization of ABC transporters with the typical and highly conserved motifs. The expression levels of these genes revealed that the highest expression of mrp1 and mrp2 genes was found in the digestive gland followed by gills, and the lowest expression of the three tissues was detected in the mantle. The expression of these genes was also studied in mussels naturally contaminated with okadaic acid (from a bloom of Dinophysis acuminata Claparède and Lachmann, 1859). The overexpression of mrp2 in the digestive gland suggests that this gene is involved in the process of detoxification of okadaic acid in M. galloprovincilais. These expression patterns agree with the suggested role of these genes in the protection against endogenous or exogenous compounds in aquatic organisms.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 614
Author(s):  
Roi Martínez-Escauriaza ◽  
Vanessa Lozano ◽  
M. Luz Pérez-Parallé ◽  
Juan Blanco ◽  
José L. Sánchez ◽  
...  

The mussel Mytilus galloprovincialis is one of the most important aquaculture species in Europe. Its main production problem is the accumulation of toxins during coastal blooms, which prevents mussel commercialization. P-glycoprotein (ABCB1/MDR1/P-gp) is part of the multixenobiotic resistance system in aquatic organisms, and okadaic acid, the main DSP toxin, is probably a substrate of the P-gp-mediated efflux. In this study, the presence and possible role of P-gp in the okadaic acid detoxification process was studied in M. galloprovincialis. We identified, cloned, and characterized two complete cDNAs of mdr1 and mdr2 genes. MgMDR1 and MgMDR2 predicted proteins had the structure organization of ABCB full transporters, and were identified as P-gp/MDR/ABCB proteins. Furthermore, the expression of mdr genes was monitored in gills, digestive gland, and mantle during a cycle of accumulation-elimination of okadaic acid. Mdr1 significantly increased its expression in the digestive gland and gills, supporting the idea of an important role of the MDR1 protein in okadaic acid efflux out of cells in these tissues. The expression of M. galloprovincialismrp2, a multidrug associated protein (MRP/ABCC), was also monitored. As in the case of mdr1, there was a significant induction in the expression of mrp2 in the digestive gland, as the content of okadaic acid increased. Thus, P-gp and MRP might constitute a functional defense network against xenobiotics, and might be involved in the resistance mechanisms to DSP toxins.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 458
Author(s):  
Juan Blanco ◽  
Carmen Mariño ◽  
Helena Martín ◽  
Gonzalo Álvarez ◽  
Araceli E. Rossignoli

Cultures of the mussel Mytilus galloprovincialis are frequently affected by accumulation of the amnesic shellfish poisoning toxin domoic acid (DA). This species is characterized by a fast uptake and release of the toxin. In this work, the main characteristics of the uptake mechanism have been studied by incubation of digestive gland thin slices in media with different composition and DA concentration. DA uptake seems to follow Michaelis–Menten kinetics, with a very high estimated KM (1722 µg DA mL−1) and a Vmax of 71.9 µg DA g−1 h−1, which is similar to those found for other amino acids in invertebrates. Replacement of NaCl from the incubation media by Cl-choline (Na+-free medium) did not significantly reduce the uptake, but replacement by sorbitol (Na+-free and Cl−-depleted medium) did. A new experiment replacing all chlorides with their equivalent gluconates (Na+- and Cl−-free medium) showed an important reduction in the uptake that should be attributed to the absence of chloride, pointing to a Na+-independent, Cl− (or anion-) dependent transporter. In media with Na+ and Cl−, neither decreasing the pH nor adding cyanide (a metabolic inhibitor) had significant effect on DA uptake, suggesting that the transport mechanism is not H+- or ATP-dependent. In a chloride depleted medium, lowering pH or adding CN increased the uptake, suggesting that other anions could, at least partially, substitute chloride.


Author(s):  
Krzysztof Gwoździński ◽  
Marta Gonciarz ◽  
Ewa Kilańczyk ◽  
Aleksandra Kowalczyk ◽  
Anna Pieniążek ◽  
...  

Antioxidant enzyme activities and lipid peroxidation inIn the present work we have studied some of the indicators of oxidative damage of the digestive gland tissue of two populations of mussels


Sign in / Sign up

Export Citation Format

Share Document