Photothermal effect of graphene oxide for 3D hybrid composites achieving controllable friction

2022 ◽  
Vol 167 ◽  
pp. 107364
Author(s):  
Qihua Wang ◽  
Nan Zhang ◽  
Chunhui Qu ◽  
Song Li ◽  
Lihe Guo ◽  
...  
FlatChem ◽  
2021 ◽  
Vol 26 ◽  
pp. 100231
Author(s):  
Caio C.C. Moreira ◽  
Ítalo A. Costa ◽  
Diego S. Moura ◽  
Cesar K. Grisolia ◽  
Carlos A.E.M. Leite ◽  
...  

2021 ◽  
Author(s):  
HASHIM AL MAHMUD ◽  
, MATTHEW RADUE ◽  
WILLIAM PISANI ◽  
GREGORY ODEGARD

The impact on the mechanical properties of unidirectional carbon fiber (CF)/epoxy composites reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and Functionalized Graphene Oxide (FGO) are investigated in this study. The localized reinforcing effect of each of the graphene nanoplatelet types on the epoxy matrix is predicted at the nanoscale-level by molecular dynamics. The bulk-level mechanical properties of unidirectional CF/epoxy hybrid composites are predicted using micromechanics techniques considering the reinforcing function, content, and aspect ratios for each of the graphene nanoplatelets. In addition, the effect of nanoplatelets dispersion level is also investigated for the pristine graphene nanoplatelets considering a lower dispersion level with four layers of graphene nanoplatelets (4GNP). The results indicate that the shear and transverse properties are significantly affected by the nanoplatelet type, loading and aspect ratio. The results of this study can be used in the design of hybrid composites to tailor specific laminate properties by adjusting nanoplatelet parameters.


2019 ◽  
Author(s):  
Yuqing Chen ◽  
Wei Wu ◽  
Zeqiao Xu ◽  
Cheng Jiang ◽  
Shuang Han ◽  
...  

Abstract Background: Treatment of multidrug-resistant (MDR) bacterial infection is a great challenge in public health. Herein, we provide a solution to this problem with the use of graphene oxide-silver (GO-Ag) nanocomposites as anti-bacterial agent. Methods: Following established protocols, silver nanoparticles were grown on graphene oxide sheets. Then, a series of in-vitro studies were conducted to validate the antibacterial efficiency of the GO-Ag nanocomposites against clinical MDR Escherichia coli (E. coli) strains. Firstly, minimum inhibitory concentrations (MICs) of different antimicrobials were tested against MDR E. Coli strains. Then, bacteria viability assessments were conducted with different nanomaterials in Luria-Bertani (LB) broth. Afterwards, photothermal irradiation was conducted on MDR E. coli with lower GO-Ag concentration. At last, fluorescent imaging and morphology characterization using scanning electron microscope (SEM) were done to find the possible cause of antibacterial effect. Results: GO-Ag nanocomposites showed the highest antibacterial efficiency among tested antimicrobials. Synergetic antibacterial effect was observed in GO-Ag nanocomposites treated group. The remained bacteria viabilities were 4.4% and 4.1% respectively for different bacteria strains with GO-Ag concentration at 14.0 µg mL-1. In addition, GO-Ag nanocomposites have strong absorption in the near-infrared field and can convert the electromagnetic energy to heat. With the use of this photothermal effect, effective sterilization could be achieved using GO-Ag nanocomposites concentration as low as 7.0 µg mL-1. Fluorescent imaging and morphology characterization were used to analyze bacteria living status, which uncovered that bacteria integrity was disrupted after GO-Ag nanocomposites treatment. Conclusions: GO-Ag nanocomposites are proved to be efficient antibacterial agent against multi-drug resistant E. coli. Their strong antibacterial effect arises from inherent antibacterial property and photothermal effect that provides aid for bacteria killing.


2016 ◽  
Vol 81 (9) ◽  
pp. 1055-1068
Author(s):  
Florentina Jitaru ◽  
Andreea Chibac ◽  
George Epurescu ◽  
Ioana Ion ◽  
Tinca Buruiana

Formulations incorporating benzophenone oligodimethacrylate (BP-DMA) and graphene structures (graphene oxide/GO, reduced graphene oxide/RGO) were exposed to UV/vis irradiation or femtosecond laser beam to achieve hybrid composites. All structures were characterized through various methods including 1H NMR and FTIR spectroscopies, optical microscopy, TEM, SEM/EDAX analysis, and DSC/XRD techniques. The photopolymerization of BP-DMA in monomer compositions with and without GO or RGO was investigated by photo-DSC and FTIR methods for determining the polymerization kinetic parameters. The photopolymerization experiments revealed a good photoreactivity of the monomers (degree of conversion: 65-77%) after 1 minute exposure to UV/vis irradiation and the addition of graphene (up to 0.5%), whereas the polymerization rate varied between 0.14 and 0.1 s-1. Moreover, two-photon photopolymerization of the formulations in presence/absence of GO or RGO nanosheets (0.1 wt.%) generated 2D microstructures by direct laser writing procedure. Also, the morphology and the properties of composites materials were analyzed.


Sign in / Sign up

Export Citation Format

Share Document