scholarly journals Real-Time Microservices Based Environmental Sensors System for Hazmat Transportation Networks Monitoring

2017 ◽  
Vol 27 ◽  
pp. 873-880 ◽  
Author(s):  
Ghyzlane Cherradi ◽  
Adil EL Bouziri ◽  
Azedine Boulmakoul ◽  
Karine Zeitouni
1990 ◽  
Author(s):  
J.D. Irish ◽  
G.J. Needell ◽  
K. Morey ◽  
J. Wood ◽  
K.C. Baldwin

Author(s):  
Haider Ali Khan ◽  
Raed Abdulla ◽  
Sathish Kumar Selvaperumal ◽  
Ammar Bathich

Internet of things (IoT) makes it attainable for connecting different various smart objects together with the internet. The evolutionary medical model towards medicine can be boosted by IoT with involving sensors such as environmental sensors inside the internal environment of a small room with a specific purpose of monitoring of person's health with a kind of assistance which can be remotely controlled. RF identification (RFID) technology is smart enough to provide personal healthcare providing part of the IoT physical layer through low-cost sensors. Recently researchers have shown more IoT applications in the health service department using RFID technology which also increases real-time data collection. IoT platform which is used in the following research is Blynk and RFID technology for the user's better health analyses and security purposes by developing a two-level secured platform to store the acquired data in the database using RFID and Steganography. Steganography technique is used to make the user data more secure than ever. There were certain privacy concerns which are resolved using this technique. Smart healthcare medical box is designed using SolidWorks health measuring sensors that have been used in the prototype to analyze real-time data.


2019 ◽  
Vol 271 ◽  
pp. 06007
Author(s):  
Millard McElwee ◽  
Bingyu Zhao ◽  
Kenichi Soga

The primary focus of this research is to develop and implement an agent-based model (ABM) to analyze the New Orleans Metropolitan transportation network near real-time. ABMs have grown in popularity because of their ability to analyze multifaceted community scale resilience with hundreds of thousands of links and millions of agents. Road closures and reduction in capacities are examples of influences on the weights or removal of edges which can affect the travel time, speed, and route of agents in the transportation model. Recent advances in high-performance computing (HPC) have made modeling networks on the city scale much less computationally intensive. We introduce an open-source ABM which utilizes parallel distributed computing to enable faster convergence to large scale problems. We simulate 50,000 agents on the entire southeastern Louisiana road network and part of Mississippi as well. This demonstrates the capability to simulate both city and regional scale transportation networks near real time.


Sign in / Sign up

Export Citation Format

Share Document